
Chapter /

LINE INTEGRALS AND

GREEN'S THEOREM

The basic idea of analysis is the suitable approximation of complicated
functions by simpler ones, such as linear functions. Thus a differentiable

function will be one that is, near every point in its domain of definition,

approximable by a linear function. It is our purpose to discover what

knowledge about the function is deducible from knowledge of this approxi

mation, called its differential. Two hundred years ago it might have been

said that the differential expresses the infinitesimal, or instantaneous behavior

of the function and the total behavior is the sum of its infinitesimal parts.

Nowadays, it is generally conceded that such an assertion is nonsense;

nevertheless it serves to describe the mood of the analyst as he begins his

investigations.

Up until now we have been mainly concerned with one-dimensional

calculus; although some of the applications have led us into the plane and

space, our techniques have been mainly one dimensional. In the present

chapter we turn to two dimensions, and in the next chapter we shall deal with

the calculus of three dimensions. Each dimension has its own flavor. In

one dimension, the order of the real numbers plays an important role; in two,

we have the influence of complex numbers; and in three, we discover the

vector product. However, there is also much that is the same in all these

dimensions, and for these common concepts there is much to be gained from

a unified treatment. Thus we begin the present chapter with a study of

differentiable #m-valued functions of n variables. We will be interested in

mappings from Rl to R2, R3 to R2, and so on, but the concept of differenti-
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526 7 Line Integrals and Green's Theorem

ability is the same in all cases and it is important for us to take cognizance
of that fact. An .Revalued function f defined in a neighborhood of a point

p in R" will be said to be differentiable at p if it can be suitably approximated
near p by a linear transformation of R" to Rm. This definition will make

precise our usage up to now of the word differentiable. The transformation,

whose existence is required, is called the differential of f and is denoted

df(p). We shall see that a differentiable i^-valued function is an w-tuple
of differentiable real-valued functions. We have already studied such

functions in R2, where we showed that if a function / has continuous first

partial derivatives near p, then it is differentiable there, and the differential

is given by

d/(F) = ^(P)^'(P)
=i dx'

where x1, . . .

,
x" are the rectangular coordinate functions of R".

We have studied, in Chapter 1
,
some examples of coordinate systems for

R2 and R3. We shall want, in the subsequent chapters, to consider more

general kinds of coordinates. A coordinate system near a point p in R"

arises in this way: if F is a continuously differentiable i?"-valued function

defined near p, and the differential JF(p) is a nonsingular linear transforma

tion, then the functions

y1=Fi(x),...,y" = F"(x)

are coordinates in a neighborhood of p. That is, the values of y1, ..., y"
serve to identify all points near p. This fact, that the nonsingularity of the

differential implies that of the mapping, is called the inverse mapping theorem.

It asserts that the mapping F has an inverse near p when its differential at

p does.

Suppose that /is a differentiable real-valued function defined in a domain

D. Then its differential associates to each point in D a linear function on R".

Any rule which does this is called a differential form. An important question
which we shall study in thi%: just when is a differentialform the differential ofa

function! In one variable, this question is easily answered. For if /is a

differentiable function of a real variable, its differential is given by

f'(x) dx

Any continuous differential form in one variable is of the form g(x) dx. We

know from the fundamental theorem of calculus that if G is an indefinite
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integral of g :

G(x) = f git) dt

then G is differentiable and dG =

g dx. Thus the answer to our question
in one variable is always. The situation in several variables is not so easy.

But the extension of the idea of integration to differential forms provides

us with a tool for answering this question, and a several variable analog of

the fundamental theorem (Green's theorem in R2).
Green's theorem provides us with a tool to extensively study complex

differentiable functions. This is the Cauchy integral formula which gives a

means for determining such a function at interior points of a domain by its

boundary values. It follows easily from this formula (a generalization of the

formula given in Section 6.7) that a complex differentiable function must be

analytic : expressible as a convergent power series. In fact, the entire behavior

of such functions can be read off from the integral formula; this is the basis

of the Cauchy theory of complex variables. We shall only begin this study.

7.1 The Differential

In Chapter 2 we studied differentiation of real-valued functions of many

variables, differentiating with respect to one variable at a time. This gave

us the concept of partial derivatives which generalized to the direction

derivatives df(\>, v) of a function /at a point p and in a direction v. Accord

ing to Proposition 20 of Chapter 2 if the partial derivatives are continuous in a

neighborhood of p, then the directional derivative rf/(p, v) varies linearly
in v.

This linear function we called the differential of /at p. Now we shall give

a more precise definition of this notion, in a style more like the definition of

the derivative of an Revalued function of a real variable (see Proposition 5

of Chapter 3).

Definition 1. Let p e R", and suppose f is an Revalued function defined

on a neighborhood of p. We say that f is differentiable at p if there is a

linear transformation T: R" -> Rm and a nonnegative real-valued function e

of a real variable such that lim (0 = 0 and

(->0

||f(p + v)-f(p)-T(v)||<(||v||)||v|| (7.1)

when ||v|| is sufficiently small.
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If such a linear transformation exists it is called the differential of f at p

and is denoted by c/f(p).

Notice that there can be at most one linear transformation T satisfying
these requirements. For suppose also S: R" -* Rm satisfies (7.1). Then

||S(h)-T(h)||<2e(||h||)[|h||

for sufficiently small h. Let h = t\ and take the limit as t -+ 0,

||S(rv) - T(rv)|| = \t\ || S(v)
- T(v)|| < 2e(0|r| ||v||

thus ||S(v)- T(v)|| <2e(t)||v|| for all small t. Letting f->0, we obtain

S(v) = T(v). Thus S = T.

Examples

1 . /(x, y) = xy2 is differentiable in the plane. Let (x0 , y0) e R2

and let (h, k) be any vector. Then

f(x0 + h,y0 + k)= (x0 + h)(y0 + k)2 = x0 y02 + y02h + 2y0 hk

+ 2x0 y0 k

=

x0 y02 + y02h + 2x0 y0 k + 2y0 hk + x0 k2 + hk2

Thus

f(x0 + h,y0 + k)- f(x0 , y0) - (y02h + 2x0 y0 k) =

2y0hk + x0k2 + hk2

This in norm is dominated by

2\y0\\hk\ + \x0\\k\2+\h\\k\2

< 2\y0\(h2 + k2) + \x0\(h2 + k2) + \h\(h2 + ^2)

< ||(A,A:)||[||(A,A:)||(|j;0| + |x0|)+ ||(A,A:)||]

since \\(h, k)\\ =(h2 + k2)i/2.

Thus xy2 is differentiable and has the differential at (x0 , y0) :

(h, k) -> y02/! + 2x0 y0 k
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This means that for small values of (h, k), the difference

(x0 + h)(y0 + k)2-x0y02

is effectively approximable by

y02h + 2x0 y0 k

The meaning of
"

effective
"

is that the error in this approximation is

of the order of e\\(h, k)\\, where e can be made as small as we please, by

choosing the neighborhood of (x0 , y0) small enough.

2. More generally, Proposition 20 of Chapter 2 suggests that

a real-valued function with continuous partial derivatives near

p0 is differentiable there. This means that for small values of v,

/(Po + v) /(Po) is effectively approximable by <V/(p0), v> =

(2 3//3x'(p0)yi). Let us complete Proposition 20 of Chapter 2 to

a verification of this fact (at least in R2). By the mean value theorem

we may write, for p = (x0 , y0), v = (h, k) :

/(P + fv)
- /(p) = d- (0 , y0)h +^ (x0 + th, n0)k

where |0
- x0| < h, \n0-y0\ ^k. Then

fif + ty)-fiv)-8-ip)h + fyiv)k
< i-'<*> h +

dy ox

(7.2)

where pt , p2 are at least as close to p as p + v. By Schwarz's in-

quality (7.2) is dominated by

and the first term is dominated by

s(l|v||) =max{|(g(Pl)-g(p)7|(P2)-|(p))
all p^ p2 in the ball fi(p, ||v||)

which tends to zero ||v|| -> 0.
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3. Error analysis. The differential of a function gives us approxi

mately the difference between two values of a function in terms of the

difference between the variables:

fix) -/(x0) = <V/(x0), x - x0> + error (7.3)

where the error is negligible if the difference is small. Considered this

way, the differential may be used to compute tolerance levels for

errors in measurement. For example, we can compute the maximal

error in the volume of a rectangular box, given certain tolerances in

the measurements of the sides. Suppose the sides can be measured

within an error of 2%. The function we are concerned with is

f(x, y, z) = xyz and V/ = (yz, xz, xy). The error in the measure

ment of a volume will be, according to (7.3), approximately equal to

{(yz, xz, xy), 0.02(x, y, z)> = 3[0.02(xyz)]

Thus, the percentage error is

100/(x)-/(x0) = 1000^6(xyz) = 6%
f(x0) xyz

Thus an error is magnified threefold.

4. Let f(x, y, z) = x(cos y)ex+z. Given error tolerances of 2%,
1 %> 5 % in the measurements of x, y, z, respectively, what error is

possible in the computation of/?
Here

V/= ((cos y)ex+z(l + x), -x(sin y)ex+z, x(cos y)ex+z)

The ratio of the increment in / to the computed value of / is

approximately

V/(x, y, z), (0.02x, 0.02j>, 0.02z)

fix, y, z)

= (1 + x)(0.02) + y(tan y)(0.01) + (0.05)z

Here we see that the error in the computed value of/ depends on
the magnitude of the variables. If y is close to n/2, the error is very

bad. The maximum percent error for values of x, y, z in these
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ranges: |x| < 1, |)>| < n/4, \z\ < 1, is

2(2) + J(l) + 5(1) = 9+|

which is less than 10.

5. A linear transformation is differentiable at every point. Let

T: R" -> Rm be a given linear transformation, and let p e R". Since

T(p + v)
-

T(p) = T(v)

we have || T(p + v) T(p) T(v) || = 0, so the estimate required by

the definition is precise. Furthermore, for any p e R", dT(j>) = T.

In particular, the coordinate functions x1, ...,x" are differentiable and

dx'(p, v) = v' for any p, v. Since dx' is independent of the base point we

shall often omit it. Notice, that dx1, ..., dx" form a basis for the space of

linear functions on R", so the differential of any function will be a linear

combination of these differentials. In particular, if / is differentiable at p,

we have

dfiv)=t^-iiv)dxi (7.4)
i=l OX

We have just shown that in two dimensions, but it is easier to directly compare

Definition 1 of this chapter and Definition 14 of Chapter 2 (cf. Problem 1)

to obtain

JffW,
.. ,(p + *e,)-/(P) df

d/(p)(E;) = hm / =

^
(p)

The verification of the following proposition concerning the behavior of

the differential under algebraic operations are easily performed.

Proposition 1.

(i) Suppose that f, g are differentiable Revalued functions at p. Then

f + g and <f, g> are also differentiable and

d(f + g)(p) = df(p) + dg(p)

d <f, g>(p) = <diij>), g(p)> + <f(p), <tf(P)>
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(ii) Suppose f = (f1, ..., fm) is an R"'-valuedfunction defined in a neighbor
hood off. f is differentiable at p ifand only iff1, ...,fm are. In this case we

have

d{(V) = (dfi(V),...,dr(p))

Proof. We shall only verify the differentiability of <f, g> ; the other assertions

are clear. By the hypothesis of (i) there are functions e, 77 of a real variable such

that lim e(t) = lim (t) = 0 as t ->-0, and linear transformations R, S such that

llf(p + v) - tip) - R(y)\\ < (||v||) ||v|| (7.5)

llg(p + v) - g(p)
- 50)11 < tXHvII) llvll (7.6)

Let h(x) = <f (x), g(x)>. Then

hip + v)
-

h(p) = <f (p + v), g(p + v)>
- <f (p), g(p)>

= <f(p + v)-f(p),g(p + v)>

+ <f(p),g(p + v)-g(p)> (7.7)

If we replace the first term by R(\) we commit an error of e(||v||) ||v|| ||g(p + v)|| and

if we replace the last term by S(v) we commit an error of r?( | |v 1 1) ||v|| |[f(p)||. These

are admissible errors, so we shall bravely proceed with these replacements. From

(7.7), we obtain

\h(p + v)
-

h(p)
-

R(v), g(p)> + <f(p), 5(v)|
< I <f (P + v)

- f (p)
-

R(y), g(p + v)> I + I </?(v), g(p + v) - g (p)> |

+ l<f(p),g(p + v)-g(p)-5(v)>|

<(l|v||) ||v|| ||g(p + v)||+ ||iJ(v)||(||S(v)|| + r,(\\y\\) ||v||)

+ llf(p)IWIIvll) l|v||

If we take M larger than the maximum value of ||g(p + v)||, and also larger than

||.R[| and \\S ||, this is dominated by

[Me( ||v ||) + M2 ||v || +M ||v|| r,(\\y\\) + ||f(p)||ij(||v||)] ||v||

which is of the desired form.

Examples

6. f(x, y) = ex cos y + yx.

df(x, y) = (ex cos y + yx log y) dx + (-ex sin y + xyx_1) dy

1. f(x, y, z) = xyz, df(x, y, z) = yz dx + xz dy + xy dz.
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**>'>-(oz;)(;).

<**H X)+( 2z^)(;)

EXERCISES

1 . Find the differential of these functions :

(a) y cos x + sin zx.

(b) cos(e*+)l) + cos(xe>).

(c) exp<x, a>.

(d) <x, exp<x, a> >.

(e) x2 + y2 + zx.

(f ) (x - v)e'+)'.

(g) n?=1x'.

2. For each of the following functions, in how large an interval about the

origin may we estimate /(v) /(0) by <V/(0), v> incurring an error of at

most 10-3||v||?

(a) xy (d) sin(x + 2y)

(b) ex+y (e) x + e2"

(c) sin x + cos y (f ) exp(x2 + y2)

3. In how large a disk about the point p # 0 can we estimate the polar

coordinates of nearby points p + v by a linear function, with an error of

at most 10-3||v||?

PROBLEMS

1. Suppose that / is a differentiable real-valued function denned in a

neighborhood of p in R". Using the definition, verify that

mw^ v
/(P + <E,)-/(P) /

df(p)(EL) = hm =
-r- (p)

r->0 t OXi

and conclude that

mdfip) = 2\i:-t\ip)dx

2. Let M(x), N(x) be n x n matrix valued functions of the variable x. If

M, N are differentiable at p, so is MN. Show that rf(MN)(p) =

rfM(p)N +M dN(p).

3. If /(f) = det(exp(MO), show that/'(0) = trM.
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4. A quantity Q varies with x, v, z according to

e'

Q =
-

yz

Suppose that x, y, z can be measured to within an error of 1 %, 1/2%, 3 %,

respectively. What will be the corresponding maximal error in Q at

corresponding values ? At (a) x = 0, y = 2, z = 5 ; (b) x = 2, y = 1
,
z = 3, in

particular ?

7.2 Coordinate Changes

In Chapter 1 we introduced some systems of coordinates in R", and we saw

that for certain problems a change of coordinates made the problem under

standable and solvable. Later on we saw, in the study of systems of linear

differential equations, that it was convenient, where possible, to switch to

coordinates relative to a basis of eigenvectors. In the geometric study of

surfaces, and in many physical problems it is advantageous to admit very

general coordinate changes. We now introduce a general notion of

coordinates.

Definition 2. Let U be a domain in Rn. A system of coordinates is an

n-tuple of continuously differentiable functions y
= (y1, . . .

, y") defined on

U such that

(i) if P # q, then y(p) # y(q),

(ii) dy'-fat), .

.., dy"(p) are independent at all pet/.

The first condition states that any point is uniquely determined by the

value of y at that point. In this sense y1, . . .
, y" are coordinates. We can

name points in U by means of the functions y1, ..., y". Further, if /is a

function defined on U, we can describe it as a function of the coordinates

y1, ..., y". The second condition asserts that the differentials dy1, .
.., dy"

span the space of linear functions. Thus we can express the differential of a

function as a linear combination of these differentials; it should be no

surprise that (7.4) is valid in any coordinate system.

Proposition 2. Suppose that y1, . .
., y" are coordinates in a neighborhood

ofp. Iff is a differentiable function defined in a neighborhood o/p, then

dfiv) = t f^(pW(p)
i=i oy
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Proof. Let x\ . . .

,
x" be the coordinates of R" relative to the standard basis. We

know that

df<P)=$ J-Mdx'
1 = 1 dx

Now we can express the standard coordinates as differentiable functions of the new

coordinates y\ ..

., y": x' = x'(y\ ..., y"), i = 1, ...,n, and /can be expressed as a

function of v1, . . .

, y" by composition:

/(p)=/(x1(y(p)),...,x"(y(p))

Let us assume that p is the origin relative to both x and y coordinates. Now

df/dy' is the derivative of /with respect to y', holding the other variables yJ,j=i

constant. In other words, df/dy'(p) is the derivative of / at p along the curve

yJ = 0,j^ i. We can parametrize this curve by

xl = gl(t) = x\0, ...,0, t,0, ...,0)

x" = g"(t) = x"(0, . . .
, 0, t, 0, . . .

, 0)

for t near 0. Now by Proposition 3 of Chapter 3, we have

df d 4. 8f dg"

^(p)
=

^/(^),...,^))I.=o=2^(0)-(0)

But dgkldt(0) = dxkldy<(0). Thus

*.$**,*. (,8)
dy' t=i dx" dy'

As the x' are differentiable functions of y; dx' =^(dx'ldyJ)dyJ and we conclude

that

8f df dx'
^, df

dm^Mdx^l^M^dy^l^dy'

Examples

9. Polar coordinates: the change of coordinates

x = r cos 9 y
= r sin 9
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is valid in any disk not containing the origin. We have

dx = cos 9 dr-r sin 9 d9, dy = sin 9 dr + r cos 9 d9

so

Sx dx
. dy dv

-

= cos9
Te=-rstn9

= sin e _Z
= rcos

If/is any differentiable function,

df df df
-f = cos 9^- + sin 9^-
dr dx dy

= A-sm9-f + cos9 )d9 \ dx dy)

10. Spherical coordinates :

x = r cos 9 cos eb y
= rsin9coseb z = r sin eb

dx = cos 9 cos eb dr-r sin 9 cos eb d9 - r cos 0 sin 0 deb

dy = sin 9 cos eb dr + r cos 9 cos eb d9 -

r sin 0 sin 0 -i</>
c?z = sin eb dr + /- cos eb deb

If/is differentiable,

dj_ = df_dx dfdy dfdz

dr dx dr dy dr+ dz~dr

= cos 9 cos eb + sin 0 cos 0 + sin <b
ox dj>

r

<3z

dj_
= dj_d_x dfidy dj_d_z_

d9 dx d9+ dy d9
+
Tzd~9

= A -sin 0 cos </> + cos 9 cos </> )
\ dx

v

dy)

d
=

dfdx d_f_dy_ dj_dz_
deb dx deb

+

dydep+ dz deb

= rl -cos 9 sin eb sin 9 sin eb + cos <A |
\ ^x 5y dz/
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11. Let f(x, y, z) = exyz. Find df/dr, df/dO :

r\ f

= (cos 9 cos eb)exyz + (sin 9 cos eb)exz + (sin eb)exy
dr

= r exp(r cos 9 cos <)(r sin 9 cos 0 cos2 < sin eb

+ 2 sin 9 cos 0 sin <)

= r[( sin 9 cos eb)exyz + (cos 9 cos eb)exz~\
d9

= r2 exp(r cos 0 cos eb)[_ r sin2 0 cos2 ebsineb + cos 0 cos < sin eb~\

12. Find 3//3x iff(r, 9, eb) = eb2 in spherical coordinates. In order

to solve this we have to write /explicitly as a function of the rectangular
coordinates. Since <b = arc sin(z/r),

^r
= 2<P t- = 2 arc sin 7^ 2 2TT72

dx <3x (x2 + y2 + z2)1/2

x arc sin

dx \

The Jacobian

In general, if

/ = /V,-- ,x")

y" =/"(x1. ,*")

is a change of coordinates, we shall write this as y = F(x). The differential

dF(x0) is a nonsingular linear transformation on R". The matrix relative

to x coordinates representing this transformation is referred to as the Jacobian

of the mapping and denoted (when it is of value to make the coordinates

explicit) by

djy\...,yn) (dy'

3(x1,...,x") \dxJJ
i,j = 1, ..., n

According to Proposition 2

d/_
"

d/ebS

dyJ
~

ii dx" dyJ
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which is just the entry by entry form of the equation

d(y\...,f)d(x1,...,x")
1 =

d(x1,...,x")d(y1,...,f)

Thus the matrices are inverse to each other as are the corresponding
differentials :

dF-1iy0) = ldFixo)r1 ify0 = F(x0)

Example

13. Let

u = x + ey

v = x cos y

be a coordinate change in a domain in R2. Then

diu, v)

d(

Six, y) -

d(u, v) ey cos y

If/(, v) = u2 + v2, then

x, y) \cos y x sin y/

^1 / xsiny e"\

+ xsin y \ -cos y 1 /

df df du df dv
= + = 2u + 2vcosy = 2(x + ey + x cos y)

ox ow ox Of ox

If g(x, y) = x2 + y2, then

dg dg dx dg dy x2 sin y + ye*

du dx du dy du ey cos y + x sin y

These observations form special cases of the multivariable chain rule. We

have already seen (Propositions 3.2, 3.3) other special cases. The general
situation is this: the differential of a composed function (see Figure 7.1) is the

composition of the differentials:

dig o f)(p) = Jg(f(p)) odf (7.9)
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In coordinates this is easy to compute by linear algebra. Let x1, ..., x"

be coordinates in R", y1, . . .
, ym in Rm and z1, . . .

,
z" in Rp- Then f and g are

given in coordinates by

f:yi=f(x1,...,x") \<i<m

g:zJ = gj(y\...,ym) \<i<p

Let h = g o f. Then h is given by the /7-tuple of functions

z> = hj(x\ . . .
, xm) = gJif'ix1, . . .

, x"), . . .
, fm (x1, . . .

, x"))

(7.9) is the same as all these equations

dhj m daJ dfk

^(P)
=

^(f(p))t^ l*>** ^^- ^

This is true since fi?g(f(p)), df(\>) are represented by the matrices

respectively. We can rewrite (7.9) and (7.10) again in matrix form. The

Jacobian of a product is the product of the Jacobians, and (7.9), (7.10)
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become

djz\...,z*) d(z\...,ZP) oXy1,...^")

d(x1,...,x")
(P) =

d(y1,...,y"')
m)

d(x1,...,x")
(p)

Here is the proof of the chain rule.

Theorem 7.1. (The Chain Rule) Let p be apoint in R". Suppose f is a

differentiable Rm-valued function defined in a neighborhood of p, and g is a

differentiable Revalued function defined in a neighborhood of f(p). Then

h = g f is differentiable at p and dh(p) = dg(f(p)) ^(p)-

Proof. Let T= dg(f(p)), and S = df (p). We must show that

||h(p + v)
- h(p) - T o S(y)\\ < e(v) ||v|| (7.11)

where lim s(v) = 0. Let
IMI-.0

<t(v) = f (P + v)
- f (p)

- S(y) (7.12)

+(w) = g(f (p + w))
-

g(f (p))
-

T(yy) (7.13)

Then, since f, g are differentiable,

ll*(v)||<S(v)||v|| ||<Kw)||^irtw)||w||

where 8(v) -0 as ||v|| ->0 and r;(v) ->0 as ||w|| ^0. Now, we verify (7.11) by com

putation :

h(p + v)
-

h(p) = g(f(p + v))
-

g(f (p))

= g(f (p)) + T(i (p + v)
- f (p)) + <Kf(P + v)

- f (p))
-

g(f (p))

(by taking w = f (p + v) f (p) in (7.13)). Now using (7.12) we can continue:

= T(S(y)) + o>(v)) + <\>(S(y) + <p(v))

= T o S(v) + r(<f>(v)) + +(S(v) + <J.(v))

since T is linear. Thus

lir(<KT II +II+CSW + ?(?)) II
||h(p + v)-h(p)-ro5(v)||
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Now we must show that

, ,
H7X<Kv))ll

,
llK5(v) + ?(?)) II

<-v' = n~7i 1 ;rv;
* 0

llvll l|v||

as ||v|| -*0. As for the first term

^^JE^m^rm)

which tends to zero as v -> 0, so that is alright. The second term is

llKS(v) + o>(v))ll <v(S(y) + <p(v)) ||S(v) + o>(v)||

llvll

<:T?(S(v) + <p(T)XII5'|| + 8(y))

As v -> 0, so does S(y) + o>(v) -* 0, and also r)(S(y) + o>(v)) -> 0. The final paren

thesis is bounded so the whole term tends to zero. We are through.

Finally, we wish to give a sufficient condition that an n-tuple of functions

y1 =/1(x), . . .
, y" = f(x) gives a coordinate system in a domain D in R".

If y1, ..., y" are coordinates, then we can invert these equations, that is,

since the y's suffice to determine points in D, we can compute the x coordin

ates in terms of y1, . . .

, y". Thus there are functions x1 = g1(y), ...,x" =

g"(y) such that

x = g(y) if and only if y
= g(x)

in the domain D. Now the second condition defining a coordinate system

is that the differentials df1, ..., df" are independent. The inverse mapping

theorem asserts that if this second condition is valid at a point, then the first

must hold in a neighborhood of that point. Thus the independence of the

vectors df1^), .

.., df"(p) are enough to guarantee that y1, ...,y" are

coordinates near p.

Theorem 7.2. (Inverse Function Theorem) Let F be a continuously different

iable Revaluedfunction defined in a neighborhood o/p0 in R". Let q0
= F(p0).

If the differential dF(p0) " nonsingular, then there is a neighborhood Uofq

and a continuously differentiable mapping G defined on U such that G(q0) = p0

andfor each q in U

F(P) = q ifand only ifp = G(q)
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Proof. Let us, for simplicity of notation, assume that p0 = q0
= 0. We have to

show that if q is small enough the equation

F(p)
-

q
= 0

has a unique solution p in a neighborhood of 0. This suggests Newton's method

for finding roots. The linear approximation to the mapping p^F(p) q at a

point pi is given in terms of the differential :

p -> F(p0
-

q + rfF(pO(p
-

pi) (7.14)

If pi is near enough to 0, rfF(pi) is nonsingular, so we can find a root of (7.14),

namely,

p=p1-aT(p1)-1[F(p1)-q] (7.15)

Now we consider the transformation Tq defined in a neighborhood of 0 by

Tip) = P
-

</F(0)
" '

[F(p)
-

q] (7.1 6)

[For simplicity we have replaced dF(pi) in (7.15) by dF(0).] It is shown below, in

Lemma 3 that for q sufficiently small, T, is a contraction in a neighborhood of 0.

Thus, for each q near 0, T, has a unique fixed point, which we denote G(q). Clearly,

F(p) = q if and only if p is the fixed point of T, ,
that is, if and only if p = G(q). It

remains only to verify that G is differentiable.

Let q0 be a point near 0, and p0
= G(q0). Let T= dF(p0). Then, by definition

F(p)
-

F(p0) = Tip
-

p0) + <Kp
-

Po) (7.17)

where ||<p(p p0)ll <e(P Po) lip Poll and e(t)->0 as /->0. Let p
= G(q).

Then (7.17) becomes

q
-

q0
= T(G(q)

-

G(q)) + (G(q)
-

G(q0))

Since T is invertible this can be rewritten as

G(q)
-

G(q0) = J-'fo -

q0) + 7-'KG(q)
-

G(q0)) (7.18)

If we can successfully study the behavior of the last term we will have verified the

differentiability of G at q0 ,
with

^G(q0) = r-1=a'F(po)-1
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But (7.18) gives us

||G(q)-G(qo)||<||r-1|| ||q- q0|| + \\T~l\\t(G(q)
- G(q0)) l|G(q)

- G(q0)ll

(7.19)

Since G is continuous (by Problem 10), we may choose q so close to q0 that the last

term is dominated by 1/2 ||G(q)
-

G(q0)ll. Then (7.19) is the same as

|lG(q)-G(q0)||<2||r-1|lllq-qoll

and (7.18) produces this inequality which guarantees differentiability

||G(q)
- G(q0)

- T~liq - q0) II < H4>(G(q)
- G(q0)) ||

< e(G(q)
-

G(q0)) IIG(q)
- G(q0)||

<2||r-Mk(G(q)-G(qo))l|q-qoll

and certainly lim 2 \\T~l || s(G(q)
-

G(q0)) = 0.

q-qo

Here is the lemma which guarantees that the Tq are contractions for q

near enough to 0 :

Lemma 1. Given the hypotheses of Theorem 7.2, there is a S > 0 such that

for q e B(0, S), the map

r(p) = p-JF(0)-I(F(p)-q)

is a contraction on B(0, 8).

Proof. Let p, p' be two points near 0 and consider the function

h(f ) = p + r(p'
- p)

- dF(0)~i(F(p + t(p'
- p))

-

q) 0 < t < 1

Then

T(p)
- T(p') = h(l)

- h(0) = f h'(/) dt (7.20)
Jo

h'(t) = p'
-

p
- ^F(O)"1 dF(p + r(p'

-

p))(p'
- p)

h'(0 = [I
- ^F(0)-' dF(p + t(p'

- p))](p'
- p) (7.21)

Now choose 8 < 0 so that

||I-rfF(0)-1^F(x)||<l/2
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for ||x|| < 8. Then if p, p' e B(0, 8), every p + t(p' - p) is in B(0, 8), for 0 < t < 1,
so, using (7.10)

l|h'(OII 5= III - ^F(O)-1 dF(p + tip' - p))|| ||p'
-

p||

<illp'-pll

Thus, by (7.9)

1 r1 1

nnp)-np')ii<-j iip'-pii^<-iip'-Pii

so T is a contraction in B(0, 8).

EXERCISES

4. Compute the Jacobian

8(u\ ...,u")

d(x\ . . .

, x")

for each of the following functions and determine those points (x1, . . .

, x")
at which u1, ...,u" are coordinates:

(a) u = xes (e) u1 =x1

v = ye'
2

X2

(b) u1 = X1 + X2 + X3

X1

H2 = X'x2 + X2X3 + X3Xl X"

u3 = X1X2X3 " = -

X1

(c) u = x2 y2

v =xy

(f ) tt1 = h\x)x"

u" = h(x)x"

(d) u = x2 + y2 + z2

v = yx'1

w = zx'1

h<(x) ^ 0 for all/ and x

5. Express the differential of/(x) = 2?=i (x1)2 in terms of the coordinates
u1, ..., u" given in Exercise 4(e).

6. Express <i/in terms of the coordinates of Exercise 4(d), where

(a) /(X) = ln(x2 + y2 + z2)

(b) /(x)=yz

(c) f(x)=x + y + z
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7. Compute the differential of

[(x-a)2 + (y-b)2 + (z-c)2]-1

in spherical coordinates in R3 {(a, b, c)}.

8. What is the rate of change of the volume of a rectangular box with

respect to the area of its surface, assuming the length of one side and the

sum of the lengths of the other two sides is left fixed ?

PROBLEMS

5. Let/be a differentiable function defined on a domain D in R2. Show

that f is a function of x + y alone if and only if dfjdx = dfjdy on D.

(Hint: Consider the change of coordinates u = x + y, v = x y.)

6. Give a condition guaranteeing that a differentiable function of two

variables can be expressed as a function of xy.

1. Suppose that /, g are two differentiable functions on R2 with V# ^ o.

Show that / is a function of g alone if and only if V/ Vg are everywhere

collinear.

8. Show that for any twice differentiable function /defined on the plane,

02/ a2/ d i df\ d2f

'dX2
+

'dy1
=

r'd'r\'d7)+'dd2

9. Show that for f(z) = z",n= 0,

d2f a2/

dx1
+
~dy~2=

10. The proof of Theorem 7.2 is still incomplete: we must show that the

function G is continuous. There are two ways.

(a) Suppose q^q. Let q
= F(p). Suppose that p-^-p. Then

F (p) = lim F (p) = lim q
=

q. Applying G we have

lim G(q) = lim p
=

p
= GF(p) = G(q)

Thus G is continuous, as desired. Whymaywe suppose that the sequence

{p} converges ?

(b) In this approach we reprove Theorem 7.2 so that the continuity

is automatic.

For a sufficiently small e > 0, we consider the space C of continuous

functions h on {q e R": ||q|| < e} such that h(0) = 0. Define T: C -> C by

r(h)(q) = h(q)
- rfF(0)-'[F(h(q))

-

q]
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As in Lemma 3 show that T is a contraction (on the space C of con

tinuous functions !). Thus T has a fixed point G. Clearly, F(G(q)) = q

as desired and the continuity of G is assured.

1 1 . Suppose that / is a continuously differentiable function defined in a

neighborhood of 0 in R3, and/(0) = 0 and 3//3z(0) = 0. Then the equation

/(x,y,z)=0

implicitly defines z as a function of x and y. More precisely, there is a

function g defined for small enough x, y such that

f(x, y, z) = 0 if and only if z = g(x, y)

near the origin. This can be proven as a corollary of Theorem 7.2 as

follows : applying Theorem 7.2 to the mapping

u x

v=y (7.22)

w=f(x,y,z)

We can find functions h, k, g of (u, v, w) such that (7.22) holds if and only if

x = h(u, v, w)

y
= k(u, v, w)

z = g(u, v, w)

Obviously, h(u, v, w) = u, k(u, v, w) = v. It follows that when w = 0,

z = g(u, v, 0) =gix, y, 0). This is the desired conclusion.

12. Here is a similar fact. The proof should be analogous to the argu

ment for Problem 1 1 . Suppose /, g are continuously differentiable near 0

in R3 and that/(0) =#(0) = 0 and

'j- (0) ^(0)

f (0) f (0)
Kdx dy

Then, there are continuously differentiable functions h, k defined for small

enough z such that

f(x, y, z) = 0 = g(x, y, z) if and only if x = h(z) y
= k(z)
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7.3 Differential Forms

The differential of a real-valued function defined on a domain D in R" is a

function defined on D whose values are linear functions on R". A function

of this type is called a differentialform, and a central issue in the calculus of

several variables is this: just when is a differentiable form the differential

of a function ? This problem is resolved by the generalization of the funda

mental theorem of calculus which takes the form in this chapter of Green's

theorem. The one-variable fundamental theorem asserts that every differen

tial form on an interval is the differential of a function. This is far from being

true in several variables.

For example, to say that 2 ai dx' is the differential of a function / is to

assert that at
= df/dx'. Since

all ( and; ('-23)
dx' dxJ dx1 dx'

we must have daj/dx' = dajdx*. This is not always the case. ex(dx + dy),

ydx xdy are not differentials of functions because the coefficients do not

satisfy these conditions. We shall explore this situation at length in the

following two sections.

Definition 3. Let D be a domain in R". A differential form on D is a

function which associates to each point p in D a linear functional on R".

If / is a differentiable function on D, the df is a differential form on D.

In particular, if xu . . .
, x is a coordinate system in R", dxu ...,dx are

differential forms on R". Furthermore, for any p e D, dxt(p), ..., dx(p)

form a basis of the space of linear functionals on R", so any such functional

is a linear combination of the <ix,(p). Thus, the general differential form

on D is of the form 2"=i g;(p) ^.(P) where the at are real-valued functions

on D.

Definition 4. Let ea be a differential form on the domain D, and write

co = 2 at dXi relative to the standard coordinates of R". We shall say that

co is a A:-times (continuously) differentiable differential form on D (co e C\D))

if the functions au . . .

, an are all fc-times (continuously) differentiable.

Suppose now that uu...,u are differentiable functions in D <= R" and

that du^p), ..., dun(p) are independent at some p e R". Such an n-tuple of

function forms a coordinate system near p: the mapping u = (wl5 ..., un)
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maps a neighborhood D of p onto a domain D' in one-to-one fashion.

Furthermore, du^p), ..., du(p) forms a basis for (/?")*, so any differential

form can be written as at dut . We can compute the relation between the

a, and the a} by the chain rule: since du' = du'/dxJ dx', we have

A du'

;
=

.-^ (7.24)

Thus differential forms transform under a coordinate change as the differ

ential of a function (compare Equations (7.4) and (7.23)). Now the equality
ofmixed partials of a twice differentiable function gives a necessary condition
for a differential form to be the differential of a function.

Proposition 3. Let eobe a continuously differentiable differential form in a

domain D. Suppose ul,...,u" is any coordinate system for D. If eo =

at du' is the differential of a function we must have

da, da.

Proof. If w = df, then a,
= df/du'. Then

du'
~

du'\du')
~

~du' \~du~')
=

Jo]

Closed and Exact Forms

We shall say that a differential form is exact in a domain D if it is the

differential of a function, and closed if Equations (7.25) hold. It is easily
verified that if these equations hold in any coordinate system, then they hold
in all coordinate systems (see Problem 13); so it is not too difficult to verify
that a form is closed.

In the plane a form has the expression eo = p dx + q dy with respect to

the rectangle coordinates. In this case there is only one nontrivial equation in

(7.25), namely,

d<7 dp

Tx-Ty
=

<7-26)

We shall refer to this function as deo; that is, if

j j dq dp
eo = p dx + q dy dco =

ox dy
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Thus, a differential form on a plane is closed if deo = 0 and is exact if eo = df.

Examples

14. eo = x dx + y dy, deo = 1 - 1 = 0. In fact, eo = d(x2 + y2)/2.

15. eo = y dx + x dy, deo = 1 1 = 0. Here eo is also exact,

since eo = d(xy).

16. eo = y dx x dy, deo = 1 1 = 2, so eo is not closed.

Notice however that y~2eo is closed, since it is exact (except for y = 0,

where it is not defined), y~2eo = d(x/y).

17. Integrating factors. Let eo = p dx + g dy be a differential

form given in a neighborhood of p0. The vector field ( q,p) can be

realized as the field of tangents to a family of curves, as we saw in

Chapter 4. Let this family be given implicitly by

Fix, y) = c

Thus, since F(x, y) is constant on these curves, its derivative along

the curve is zero; or what is the same

dFix, y)i-qix, y), p(x, y)) = 0

Since dF and eo annihilate the same vectors at each point, they are

collinear. Thus there is a function X(x, y) such that

dF = Xco

We conclude that for any differential form eo there is a factor X such

that Xeo is exact. This is true in two dimensions, and fails in higher

dimensions. X is called an integrating factor for eo.

18. The polar coordinate 9 is not a well-defined function on the

domain R2 - {0}, but its differential is:

/ y\ ydx + xdy
d9 = d\ arc tan

- =

5 2

\ x) x2 + y2

Thus this form is closed, but not exact on the domain R2 - {0}.
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We shall now verify that every closed form on R2 {0} is equal to an

exact form plus a constant multiple of d9. Thus the space of closed forms

on R2 {0} is larger than the space of exact forms by one dimension.

Suppose that eo is a closed form in R2 {0}. In polar coordinates

eo(re'e) a(re'e)dr + bire'e)d9 and since eo is closed we have db/dr = da/d9.
It follows that

F(r) = f nb(reie) d9
Jo

is a constant. For

dF r2n db r2n da

1T
= \ JTd(>= ^d9 = a(re2')-a(re0) = a(r)-a(r) = 0

dr J0 dr J0 d9

Let c(eo) be that constant. Notice that c(d9) = 2n. Further, if eo = df,
then c(eo) = 0. For

c(eo) = Fb d9 = F%d0 = f(reM) - f(re) = 0
Jn Jn OoJ0

Conversely, if c(eo) = 0, then eo is the differential of a function defined on

R2 - {0}. Let

fir, 9) = (ait) dt + f b(re) deb (7.27)
jj j0

Since c(eo) = 0, f(r, 9 + 2n) =f(r, 9) for all r, 9, so we can define a function

FonR2 - {0} by Fireie) =f(r, 9). Differentiating (7.26), we have

d9 89
K '

Thus, rfF = eo.

Finally, if eo is any closed form on R2 {0}, let 0 = eo c(eo)d9/2n.
Then

c(0) = c(co) - ^ 277 = 0
271
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so 9 is exact: 9 = dF. Thus

eo = dF + CPd9
2n

EXERCISES

9. Which of the following forms are closed ?

(a) 2 x' dx'
1 = 1

(b) xy dz + yz dx + zx dy

(c) xyz(rfx + dy + rfz)

(d) rdr + dd

(e) r'dr + rdd

(f ) r sin 0 /> + / cos 6

(g) r sin <j> dr + r cos </>sind dd + r sin (/> <*/>
(h) d(xez cos(xyz))

(i) XiX2 dx3 + x2 x3 dx* + x3 X4 rfxi + x4 Xi dx2

(j) Xi dx2 + x3 rfx4 + x5 dx6

(k) Xi <s?x2 + x2 dx3 + x3 rfxi

10. Is the form (z a)'1 dz exact in C {a}? Is its real part exact ? Is

its imaginary part exact ?

1 1 . Find integrating factors for the following forms :

(a) x(dy + dx) (d) x dy

(b) xy(dx + dy) (e) ex+ydx + e'dy

(c) ydx + x dy (f ) sin x dx + cos x rfy

PROBLEMS

13. Let (x1, . . . , x") and (u\ . . .
, u") be two coordinate systems valid in a

domain D in R". Let w be a differential form defined in Z) and write to in

terms of these coordinates as

w = ^at dx' = 2 ai ^"'
1=1 (=1

Show that if

8at daj
=

,
for all 1, j

dx' dx'
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then

dat da
j

-
=
- for all l,j

14. Let the hypotheses be the same as in Problem 13, but this time

suppose n
= 2. Show that

dai da2 ldat da2\ d(ui, u2)

dxi dxi \du2 dui) d(xi,x2)

15. Show that the space of closed forms on R2 {0, 1} is larger than the

space of exact forms by 2 dimensions. (Hint: Let 80 be the ordinary polar

angle, and let Qx (p) be the angle between the ray from 1 to p and the horizontal.

Then if to is closed in R2 {0, 1} there are constants a, b such that

w a dd0 b ddi is exact.)

7.4 Work and Conservative Fields

Suppose we have a field of forces F given in a domain D in R" : F(x) is the

force felt by a unit mass situated at the point x. In moving an object ofmass

m along a certain path a certain amount of energy is expended; this is called

work. In this section we shall describe the computation of work.

Suppose first that a body of mass m moving in a straight line experiences
a force of magnitude F per unit mass operating in the direction opposite
the motion. Then, by definition the work required to move that body a

distance d is F m d. In a more complicated situation the force acts in

space in a fixed direction with a certain magnitude ; thus the force is repre

sented by a vector F. Suppose we want to move a body of mass m from a

point a to another point b. The work required for this movement will

depend only on the component of the force in the direction of motion and

will be given again by -F0- m- d, where F0 is this component and d is the

distance between a and b. That is, if b -

a = dF, where E is a unit vector,

then F0 = <F, E> and the work is

-<F, E)md= -m<F, b -

a>

Now, in general, the force is not necessarily constant, but varies with

position. The general situation is that of a force given by a vector field

(vector-valued function) F on R3. Suppose that for some perverse reason

we desire to move a given body from a to b along a particular path Y. As
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is customary we try to adapt the above formula to this revised situation by

assuming that the force field varies little over small intervals (that is, F is

continuous) and that the path is very close to being a sequence of straight line

segments. Then, we get a reasonable approximation to the total work

involved by adding up the work required over each line segment assuming
the force is constant there. More precisely, then, we select a very large
number of points a = p0 , p1( . . .

, ps
= b numbered sequentially along the

path (see Figure 7.2). The work we seek is then approximated by

-m<F(p,),p,-p/_1> (7.28)
i=i

We define the work as the limit of all such sums as the maximum of the

distance between successive points tends to zero, and we expect that, as

usual, the calculus will make that computable.
And it does. Suppose given, for example, a field of force F given in a

domain Din R3; thenF =(/1(x),/2(x),/3(x))is an Revalued function defined

on D. Suppose r is an oriented curve in D, given by the parametrization
x = g(r) = (g^t), g2(t), g3(t)), a < t < b. We shall now compute the work

done in moving a particle of mass m from g(a) to g(b). Let g(a) = p0 ,
. . .

,

ps
= g(b) be a very large number of points situated along Y. Referring to

the parametrization we can write p0
= g(f0), Pi = g(?i), ; . .

, ps
= g(fs), with

a = t0 < tx < < ts = b. Then the approximate work done is given by

Figure 7.2
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(7.28):

-m<F(g(tJ)),g(r/)-g(rJ_1)> (7.29)
; = i

= -mtmtd)L9M ~

9iiti-i)l + f2(sitd)L92iti) ~

QiiU-J]
i=l

+ /3(g('j))[03(f)-03(f|-l)]

By the mean value theorem, there are $i
,

,- , 02, i $3, ;
sucn that

0/'i)
~

0j(*i- 1) = 9'jiOj, dih
~

U- 1) r,_ i < 0,, ; < r,

Thus the approximating sum (7.29) becomes

-m

3

fMttWM.t) Oi-^-i) (7.30)

which is a typical Riemann sum approximating

-m ( imit))9'jit)dtJ
a j=l

= -m\ <[F(t),g'(t)ydt (7.31)

In fact, as the
"

very large number of points
"

on Y becomes infinite, the

sums (7.30) do tend to the integral (7.31), so we are justified in referring to

this as the work required to move the mass along Y. We are thus led to this

definition of work :

Definition 5. Let D be a domain in R" and F a force field defined in D;
that is, F is an ^"-valued function on D. Let Y be an oriented curve defined

in D. The work required to move a unit mass along Y is

W(Y, F) = - f<F(0, g'(0> dt
Ja

where g : [a, b~] -> Y is a parametrization of Y.

Notice that since W(Y, F) is the limit of a collection of sums defined

independently of any particular parametrization that W(Y, F) is also inde

pendent of the parametrization.
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Sometimes paths of motion have a break in direction (see Figure 7.3).
Such a curve is called a piecewise continuously differentiable curve, or a path

for short. More precisely, we make the following definition.

Definition 6. An oriented path is the image of an interval [a, U] under a

continuous function f such that

(i) f is continuously differentiable with nonzero derivative at all but

finitely many points tu ... , ts.

(ii) lim f '(0 and lim i'(t) exist (but are not necessarily equal) and are

nonzero.

If f(a) = f(b) the path is said to be closed. If Y is an oriented path we can

write r = r\ + + rs+1, where the Yt are the oriented curves between

the points ti _ t and tt . We define the work W(Y, F) by

W(Y,F) = zZW(Yi,F)

Examples

19. Let F(x, y) = (-y, x2) be a force field in R2. The work done

by moving a unit mass around the unit circle is found this way. First,

we parametrize the circle:

r:x = (cosr, sin f) 0 < t < 2n

Figure 7.3
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Then

-27t

W(Y, F) = -

<( - sin t, cos2 t), ( - sin t, cos r)> dt
Jo

.2k

= - (-sin2 t + cos3 t)dt = n

Jo

20. For the same force field, find the work done around the bound

ary of T of the rectangle [(0, 0), (1, 1)], traversed counterclockwise.

Here Y = Yx + Y2 + Y3 + T4 ,
where

r\ : x = (f , 0) 0 < t < 1

r2:x = (l, 0 0<t<l

r3:x = (l-M) 0<t<l

T4:x = (0,1-t) 0<t<l

Then

W(T' F) = {/o<(' ^ (1' 0)> dt + /o<('' 1}' (' 1}> rf/

+ f <(-l,(l-02),(-l,0)>dr

+ j\l- t)2, 0),(0,-l)} dt\

= - f (0 + 1 + 1 + 0) dt = 2

21. Let F(x, y, z) = (yz, xz, xy) and compute the work done along
one full loop of the helix

T: x = (cos t, sin t, t) 0 < t < 2n

.2*

W(Y, F) = -

<(( sin t, t cos t, sin t cos t), (-sin t, cos t, 1)> dt
Jo

.271

= -

(-t sin2 t + i cos2 t + sin t cos t) dt = 0
'o

22. Compute the work done in the presence of the same force field

along the curve x = 1, y
= 0, 0 < z < 2n. Here Y is given para-
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metrically by

T:x = (1,0,0 0<i<27t

Thus

W(Y, F) = - F <(0, t, 0), (0, 0, 1)> dt = 0
Jo

Conservation ofEnergy

Now let us suppose we are given a field of forces on a domain D. Let Y

be a closed path in D. Under optimal conditions we would hope for no

loss of energy in moving a mass around Y. We shall call a field conservative

if this situation is the case; that is, the field F is conservative if W(Y, F) = 0

for every closed path Y. Not every field is conservative, as Examples 19 and

20 show. In case F is a conservative field, then the work required to move

a unit mass from one point p0 to another pt will be the same no matter what

path from p0 to p, is followed. For suppose we take two such oriented paths

T, T'. Then the path from p0 to p0 obtained by first traversing r and then

T' (T' oriented from pt to p0) is a closed path. Thus W(Y Y', F) = 0

since F is conservative. But W(Y Y', F) = W(Y', F), so

W(Y, F) = W(Y', F)

Definition 7. Let F be a conservative field defined in the domain D. A

potential function for F is a real-valued function FI defined on D such that,

for any path Y from p to p' we have

W(Y, F) + n(p') - n(p) (7.32)

is a constant.

n is sometimes called the potential energy of the force field F and the

constancy of (7.32) is just the assertion that a conservative force field obeys

the law of conservation of energy. We can relate the potential function of a

conservative field with the field, by its differential. We obtain this important

result :

Theorem 7.3. Suppose that D is a domain such that any two points can be

joined by a path (we say D ispathwise connected).

(i) Every conservative field on D has a potential function.

(ii) Two potentials of the given field differ by a constant.
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(iii) If the field F = (f, ...,/) has the potential function Yl, then

dU=fldx1 + ---+fndx"

Proof, (i) Suppose that F = (f, . . . ,/) is a conservative field defined on D.

Then if T and I" are two oriented curves with the same end points, W(T, F) =

W(T', F) since F is conservative. Fix p0 e D. Since D is arcwise connected, if p

is any point of D there is a curve r from p0 to p. Define IT(p) = W(Y, F). n(p)

is a well-defined function of p since the work required does not depend on the

choice of r. Now let p and p' be two points in D, and let r be a path from p to p'.

If r0 is a curve from p0 to p, then r + T0 is a curve from p0 to p', so

- w(v0 , F) = nip),
- w(v + r0, f) = n(p')

But W(V + T0 , F) = W(T, F) + W(T0 , F) = W(Y, F)
-

n(p). Thus -Il(p') =

W(T, F)
-

IT(p), or W(T, F) + II(p') - n(p) = 0, so (i) is proven.

(ii) If IT is another potential and r0 is a curve joining p0 to p then by the above

definition

U'(p)
- n'(p0) + W(T0 , F)

is a constant, say C. But W(T0 , F) = II(p), by definition, thus

n'(p)-n(p) = C+H'(p0)

another constant. Thus two potentials for the field F indeed differ by a constant.

(iii) Finally, we prove that dTl = 2/ dx{ . Let pe D. Fix /, and let e be so

small that the ball B(p, e) <= D. Let Te be the curve with this parametrization

g(r) = p + rE, 0<t<e

Since IT is a potential for F,

II(p + eE,)
- n(p) =

-

W(TC ,)=[' (Visit)), g'(/)> dt
Jo

Now g'(0 = E, and

<F(g(0), g'(0> = 2 fAP + 'E,) <E, , E,> =/,(p + IE.)
j

Thus

IT(p + eE,)
- IT(p) = \'f,(p + tE,) dt



7.4 Work and Conservative Fields 559

Thus

en

dxi
(p) = lim - ff,(p + tE,) dt =/,(p)

e-0 Jo

and so the proof of the theorem is concluded.

EXERCISES

12. Find the work required to move a unit mass around the given path
T in the presence of the given force field:

(a) F(x, y)=(y, x) T: unit circle

(b) F(x,y) = (y2,y x1) Y: boundary of the triangle with

vertices at (0, 0), (0, 2), (0, 1)

(c) F(x,y)=(l,x) r:z(?)=exp(l + 0rfrom t = Q to t = l

(d) F(x, y, z) = (y, x, z) T : x = (cos t, sin t, t)

(e) F(x, y) = (x, xy) T : the portion of the parabola y
= kx2

from (0, 0) to (a, ka2)

(f) F(x, v, z) = (z, x2, y) T: closed polygon with successive

vertices (0, 0, 0), (2, 0, 0), (2, 3, 0), (0, 0, 1), (0, 0, 0)

13. Which of these fields are conservative?

(a) F(x, y) = (cos x, cos v, sin x sin v)

(b) F(x, y) = (cos x cos y, sin x sin y)

(c) F(x,y)=(x,y)

(d) F(x,y,z)=(y,z,x)

(e) F(x, y, z) = i-y, x, 1)

(f) -(x2+y2)-"2(x,y)

(g) (x2 + y2)"1/2(- v, x)

PROBLEMS

16. Let F(x, y) = (A(x), B(y)). Show that W(T, F) = 0 for any closed

path T.

17. Find potential functions for these fields:

(a) F(x,y, z) = -(0, 0, 1)

(b) F(x, v, z) = -(x2 + v2 + z2)-1J2(x, y, z)

(c) F(x, y, z) = (y, x, 1)

(d) F(x, v, z) = xy dz + yz dx + zx rfy

18. Let F be a force field in the domain D and T an oriented path in D

from p0 to p. Show that the work W(T, F) can be written as

||F||cos0<fr
'po

where 5 is arc length along Tt and 8 is the angle between F and the tangent

toT.
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19. Suppose the field F has the potential function IT. The surfaces

n = constant are called equipotential surfaces for the field F.

(a) What are the equipotential surfaces for a central force field ?

(b) What are the equipotentials for the fields of Exercise 1 3 which are

conservative ?

20. Show that if F is a conservative force field in R2 the lines of force for

F are orthogonal to the equipotential curves for F.

21. If F is a vector field in a domain D in the plane, we define *F as the

field perpendicular and clockwise to F of the same magnitude. Verify this

relation between F and *F if

F(p) = iAtip), A2(p)), *F = (-A2(p), At(p))

22. Suppose both F and *F are conservative fields with potentials II,

II*, respectively.

(a) IT is harmonic.

(b) II + ill* satisfies the Cauchy-Riemann equations.

23. If /= u + iv is a complex analytic function, u is the potential for a

field F such that *F is also conservative (and has potential function v).

24. A vector field F is called radial if it is central and its magnitude is a

function of the radius. Show that if F is a nonzero radial vector field it is

conservative, but *F is not.

7.5 Integration of Differential Forms

The study of work has led us to differentials of function via the obvious

relation between vector fields and differential forms. If F = (f, . ..,/)
is a vector field defined on a domain in R", the differential form 2?= i f dx'

will be denoted <F, dx} (for obvious reasons). According to the results

of Section 7.4, the field F is conservative if and only if the form <F, dx}
is exact. In this case <F, dx} = d(YL), where n is a potential function

for the field F.

On the other hand, if eo is a form we can write eo = <F, dx} for some vector

field F (if co = 2 ; dx', F = (aY, . . .
, an)). We can thus rely on the notion of

work to define the integral of co over a path Y:

jco = j(F,dx}=-W(Y, F) (7.33)

Thus, if cu = 2 a; dx' and Y is parametrized explicitly by x' = x'(0 for

a < t <b, then

r cb ^ dx'

W.?*** (7"34)
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The idea of defining the integral of a form in terms of work presents us

with a subtle inconsistency which we would like to avoid. The notion of a

differential form on R" involves the geometry of R" only insofar as it is a

vector space. In the conception of differential form, the inner product of

R" is irrelevant and no particular coordinatization of R" is selected over any

other. But the notion of work is deliberately expressed in terms of the

Euclidean structure of R"; it essentially involves lengths and angles. As

a result, with the definition (7.33) of integration, we can only compute the

integral by means of (7.34) in terms of rectangular coordinates for R".

Since the concept of differential form is free of a particular basis, we want

accessory concepts (such as integration) also to be free; in fact, we would

hope to compute jr eo by means of (7.34) with respect to any coordinate

system as well as any parametrization of Y. This turns out to be the case,

and therein we begin to see the importance of the notion of invariance with

respect to coordinate choices.

Proposition 4. Let eo be a differential form defined on a domain D in R"

and suppose eo = /f dx' = eb; du' with respect to two different coordinate

systems (x1, . . .

, x"), (u1, . . .
, u"). Let Y be a path in D parametrized in two

different ways by

x' = x'(t) a<t <b

u' = u'(t) a < x < /?

Then

rb dx1 r$ du'

\a /.WO)Ttdt
=

\jL: 0(W)
Tx

dx (7-35)

Proof. We can write the x's as functions of the it's and / as a function of t.

x' =x'(u\ ..., u") in D

t = t(r) <x<t<P

Now, according to (7.24)

^(u)=2//x)|^(u) (7.36)

when x, u are coordinates for the same point.

Now, let us compute the integral on the left of (7.35) by the change of coordinates

t ->- t, according to the calculus of one dimension.

r" dx' r dx' dt r
"
_

, , , ,
dx'

J. ? fMt)) -d7dt
= L lfM'(T)) -d~t^

= J. ?'' '(T)) T, dT

(7.37)
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But we can compute dx'jdr by the chain rule; x is a function of u which is a func

tion of t :

dx' _ dx' du'

~dr~
~

T lu' Hh

(7.37) becomes

f'Vr/M 3xJ du' r"
,

du'

IfiWfir)) dr= j,i(u)(T)) dT
Ja Li du' dr J dr

by (7.36). The proof is concluded.

On the basis of that proposition we may now define the path integral
of a form.

Definition 8. (The Path Integral) Let Y be an oriented path in a domain

in which the form eo is defined. If Y = 2f=i Tt, where the T, are para
metrized by x = g;(0, a; < t < b^ we define

fo> = 2 fV&tt.feltt)^
*+ i=l Jo,

Notice, that if Y is parametrized with respect to arc length, then g' is the

tangent and the integral may be written as

j eo = J co(T) ds

Examples

23. Find j/ r2 d9, where T is the boundary of the rectangle
-1<x<1, -l<y<l. Now, in rectangular coordinates r2 d9 =

ydx + xdy. Thus

[r2d9
Jr

= j-(-l)dx + j il) dy-f -(l)dx-f (-l)dy = 8

24. Find Jr (x2 + y2 + z2)(dx + xy dy + dz) around the curve
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x2 + y2 = a2, x2 + y2 + z2 = b2. This can be parametrized by

x = acos0 y
= asin0 z = (b2 a2)1'2

and thus has two branches. Thus

f (x2 + y2 + z2)(dx + xydy + dz)
Jr

.271

= 2 (-a sin 9 d9 + a2 cos2 9 sin 8d0) = 0
Jn

In case the curve T is a closed path (a continuous image of a circle) it is

customary to write <j>r to indicate that the integration is around a loop. We

now summarize what we know so far about the integration of differential

forms.

Theorem 7.4. Let eo = 2 a ,- dx' be a differentiable differential form defined

on a domain D in R".

(i) eo is the differential of a function if and only ifreo = 0 for all closed

curves Y.

(ii) eo is the differential of a function if and only if the field (au .

.., a)

is conservative.

(iii) If eo = df then

Pti) = Piv) alii, j allpGD (7.38)
dXj OX;

When is a Closed Form Exact?

For certain domains, Equations (7.38) are sufficient to guarantee that the

form eo is the differential of a function; but this is not always true. For

example, let

-ydx + xdy
-mR2_mQ)}

x2 + y2

Certainly, eo satisfies the required conditions (recall Example 5) :
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If cu were the differential of a function, then we would have |r eo = 0 for

every closed curve Y. However since eo = d9 (as remarked in Example 5),

|r eo = In if T is a circle centered at the origin. Notice that in some sense

co is the differential of a function, albeit not single valued. If we exclude

the line x = 0 (or the line y
= 0), in the remaining domain we can take a

principal value of 9 = tan_1 y/x; but we cannot find a continuous single-

valued function on all of R1 - {0, 0} whose differential is co.

Of course, in the above example in any small enough neighborhood of any

point in R2 - {(0, 0)} we can write to = df fox some function /. This is in

fact true for any differential form satisfying the compatability equations

(7.38). That is, suppose co = L\jai dxt is a differentiable differential form

defined in a neighborhood U of p0 in R" and the equations (7.38) are satisfied.

Then if B is a ball centered at p0 and contained in U, there is a differentiable

function / defined in B such that df= co in B. This is really easy to prove :

if p is any point in B, let Lp be the oriented line from p0 to p and define

/(P) = h <*> Then, we can differentiate/with respect to x' by differentiating

under the integral sign:

Now the integrand will have one term of the form ; dajdx' dx1, which is

by Equations (7.38) the same as ,- dajdx' dx1 = efaj . This is the essential

term: by the fundamental theorem of calculus we can conclude from dfjdx3 =

J dttj that df/dxJ = aj as desired. Here is the precise proof.

Theorem 7.5. (Poincar^'s Lemma) Suppose that D is a domain with this

property: there is a p0 e D such that for every p e D the line joining p to p0 is

also in D. (D is star shaped (see Figures 7.4 and 7.5).) Then in D every

closed form is exact.

Proof. We may suppose p0 is the origin. For pe D, let Lp be the oriented line

segment joining 0 to p. We may parametrize Lp by

Z,:x=x(r) = fp OsSf^l (7.39)

If co is a closed form, define /(p) = lLp co. We shall show that df=ext. In

coordinates, p = (x1, . . .

, x"), co = 2 d dx', and by (7.39)

r dx* r1 "

/(x1,...,x")= yZai dt=\ JlOt(tx)x'dt
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Figure 7.4

Then, differentiating under the integral sign :

df r1 T dat 8x'"l

=

J J,j(tp)tx'dt+j aj(tp)dt

Now, using the compatibility equations, the integrand of the first integral takes

Figure 7.5
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the form

_ dax |" da.

t =
-

[aj(tp)] t

We can now compute the first integral by integration by parts :

r1 8
'

r1
tt. [aj(tp)]t dt = aj(tp) -t

-

aj(tp) dt

Thus

8f r1 r1
t~ (P) = a/P) 1 -

aj('P) * + a/'P) ^ = j(p)
dxj J0 Jo

and the proof of Poincare's lemma is concluded.

Poincare's lemma serves to indicate the nature of the solution to the basic

question: when are closed forms exact? It depends on the shape of the

domain. If the domain is a ball, or a cube, or any
"

star-shaped
"

domain,

then every differential form which satisfies the compatibility differential

equations (7.38) is the differential of a function. On the other hand, if the

domain has holes (as does R2 {0}), there are closed forms which are not

exact. We have seen, to be precise, in the discussion following Example 18

that on R2 {0} the dimension of the space of closed forms exceeds the

dimension of the space of exact forms by one. Problems 15 and 33 are

devoted to showing that when we remove a finite number of points from R2

this excess dimension on the remaining space is the same as the number of

removed points. These examples suggest that domains with holes are not

just defective in the closed-exact problem, but further that the solution to this

problem gives a measure of the defect. This striking relationship between

the shape, or topology, of the domain and the r-nalytic question of integ-

rability persists when we move to more complicated domains, or surfaces

and even into higher dimensions. The shape of a pretzel is accurately
reflected in the closed vs. exact controversy on its surface. The general
theorem relating this analysis to the topology of the domain is de Rham's

theorem and is one of the cornerstones of the modern subject of differential

topology.

Now, back in one dimension, the fundamental theorem of calculus relates

the values of a function on the boundary of an interval with the integral of

its derivative over the interval:

f(b)-f(a) = fdf = f^dt (7.40)
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The analog of this theorem for differential forms in R2 is Green's theorem;
there are many analogs in higher dimensions and we shall study some of

these in the next chapter. For the remainder of the present chapter we shall
study only the two-variable case.

Suppose D is a domain in R2, and the boundary of D is made up of a finite

collection of curves (see Figure 7.6). We make the boundary into an

oriented path by choosing the direction of motion so that the domain D is

always on the left. If T -v N is the (right-handed) tangent-normal frame on
the domain, then the normal N always points into the domain (see Figure
7.7). We shall refer to the boundary of D when so oriented as dD. Now

Green's theorem simply says this: if co is a C1 differential form defined on a

neighborhood of D, then

Figure 7.6
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Figure 7.7

If we consider the boundary of the interval in (7.40) as oriented in some

appropriate way, then (7.41) appears to be a direct generalization of (7.40).
In order to see why (7.41) is true, we must first assume that D is of a special

form. We say that the domain D is regular if it can be expressed in both

following forms :

D = {(x, y) e R2 : a < x < b, f(x) <y< g(x)} (7.42)

= {(x, y)eR":a<y<P, eb(y) <x< <A(y)} (7.43)

(see Figure 7.8).
For regular domains, Green's theorem follows easily from the fundamental

theorem of calculus. Let co be a given C1 form, and write co = p dx + qdy.



7.5 Integration of Differential Forms 569

/ .

/ .

a regular domain

an irregular domain

Figure 7.8
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Then

deo = \ (qx py) dx dy = qx dx dy py dy dx
JD JD JD JD

We perform these integrations, by iteration.: use x first for the first integral,

y first for the second.

r ^\cHy)dq 1 j-" r"

\ qx dx dy = dxdy=\ q(\ji(y), y) dy - q(eb(y), y) dy
jd Jx LJ<H>>) OX J Jx Ja

(7.44)

Now, we can parametrize dD in two parts as :

dD = rt + T2

Tt : x(0 = OKO, 0 < ' < 0
-

Y2 : x(0 = (c6(0> 0 a < r < j8

Thus

f q dy = f q dy - f q dy = f ^(^(0- 0 d* - f (*(0, 0 dt
j$d Jrt J-r2 Jx J

a

(7.45)

Comparing (7.44) and (7.45) we deduce that

f qx dx dy = f q dy (7.46)
'd Jeo

We leave it to the reader to verify by the same kind of argument that

\ py dx dy
=

p dx (7.47)
Jd JdD

(Problem 25). Equations (7.46) and (7.47) together give Green's theorem.

Now, not every domain can be represented in both the required ways;

in fact, in general neither is possible. However, for most domains D it is

true that D can be covered by finitely many disks A1; . . .

, As so that D n A; =

Dt is regular for every /. Clearly, if D is bounded by finitely many polygonal
curves this is true. All but the most pathological domains that we have seen

have this property. The above argument generalizes easily to these types of

domains. We shall now call any such domain regular.
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Definition 9. A domain D is regular if its boundary is a path and if D

can be covered by disks At, . . .

, As such that each D n A,- can be represented

in both forms (7.42) and (7.43).

Theorem 7.6. (Green's Theorem) Let D be a regular domain and eo a

differentialform defined on a neighborhood ofD. Then,

JdD J
D

deo

Proof. Let Di n A, where the disks Ai, . . .
, A are as given in the definition.

In particular, by the preceding arguments, Green's theorem is true on Z>, for each /.

Let pi, . . .
, ps be a partition of unity subordinate to the covering Au . . . , As . Then

the pt areC functions and 2 p<
= 1 on D, and pi is nonzero only inside A, . Now,

by Green's theorem on Dt

p,cj
= d(piw)

JdDi JDi

Since p( co is zero off Di ,

d(piw)= d(p,co)
Jd, Jd

But also pi co is nonzero only on the part of each of the curves dD, 8Di which is

common to both, thus also

>eDi

Thus

p,co= p,(
JBD, J SD

p,co= d(piw) l<i<s

JdD J D

Adding these equations, we obtain Green's theorem for D since 2 P<
= 1 :

f co = f 2P'aj=2l P'OJ=z\\ diP< <) = diz\ Piu)=\ du

JiD JdD JdD JD JD J D

Examples

25. Let D be the unit rectangle [(0, 0), (1, 1)]. Then, by Green's

theorem

f x2y dx + (x
- y) dy = f (1 - x2) dx dy = f (1 - x2) dx = =

JdD JD J0 J
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26. The integral of co = cos xy dx + y cos x dy over the boundary
of the domain

> = {(x, y):0<x2 <y < 1}

is

co=[ ysinx + x cos xy] dx dy
JdD Jd

= [( y sin x) + x cos xy] dy dx

Green's theorem is also convenient for transforming double integrals
into line integrals. Noticing that dx dy arises as d( y dx) or d(x dy)
in Green's theorem, we may compute areas ofdomains by line integrals.

27. Find the area bounded by the curves y = 1 x4 and y = 1 x6

in the upper half plane :

area = dx dy
jd

= - f y dx =
- f (1 - x4) dx + f (1 - x6) dx =

JdD J-l J-l

4_
35

28. Find the area inside the ellipse

x2 v2

E---2 + h=l
cr b*

We can parametrize E by the polar angle :

x = a cos 9 y
= b sin 9

Thus

fJE J0

EXERCISES

c c2n
area = \ x dy = ab \ cos2 9 d9 = nab

J F Jn

14. Compute the line integrals of differential forms arising out of the

work problems in Exercise 12(a), (b) using Green's theorem.

15. Compute JY co for given co and T (using Green's theorem if con

venient).
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(a) co = z dx + x dy + y dz T: closed oriented polygon with

successive vertices (0, 0, 0), (0, 1, 1), (1, 0, 0), (-1, -1, -1).

(b) co = x2y dx + y2x dy T : the ellipse a2x2 + b2y2 = 1 .

(c) co = (x + y) dx + (x2 + y2) dy V : the triangle with successive

vertices (0, 0), (4, 0), (2, 3).

(d) co = x2 dy + 2xy dx T: z = e<1 + ' from t = 0 to t = 2.

(e) co = (x + y) dx + (y + z) dy + (z + x) c/x

T: the circle x2 + z2 = 1, y = 3.

16. Compute, using Green's theorem the area of the domain D:

(a) D = {(x,y): 0 <sinx<y <tanx< 1}

(b) D is the domain in the upper half plane bounded by the ellipse
x2 + 2y2 = 1 and the parabola x = 2y2.

(c) D is the quadrilateral with vertices at (0, 0), (1, 0), (7, 3), (2, 5).

(d) Inside the curve x = cos" t, y
= sin" t n > 0.

PROBLEMS

25. Verify Equation (7.47) in the text and conclude the proof of Green's

theorem.

26. Using Green's theorem prove that if co is a closed differential form in

all of R2, then co is exact.

27. A differential form is called radial, if it is of the form <F, dx} where

F is a radial vector field (see Problem 24). Show that if co is radial, it is of

the form f(r)dr.

28. Show that if co is a compactly supported (that is, it is identically zero

outside some large disk) form on the plane that

(a) f
Ji

dtx>=a
R

(b) f co = f rfco
Jx axis ^y>0

29. Show that if co is a compactly supported closed form in R2, it is the

differential of a compactly supported function.

30. If co is a differential form, define *co as follows: if

eo = <F, dx> *co = <*F, rfx>

(a) Show that if co =p dx + q dy, *co = q dx + p dy.

(b) Show that (in a disk) *df is also exact if and only if/is harmonic.

(c) Show, using complex notation

*co(T) = co(/T)
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(d) If/is harmonic, let/* be such that df* = *df. Show that/+ if*

satisfies the Cauchy-Riemann equations.

31. Let T be an oriented curve in R", with tangent T and normal N. If

/"is a differentiable function we define these derivatives of /along V:

^ = a/(T) = <V/,T> ^ = rf/(N) = <V/,N>

Show that

32. Suppose that D is a regular domain and / g are twice differentiable

functions defined on a neighborhood of D. Verify these formulas (using

Green's theorem) :

f 3/
(a) ^ds=0Jsd ST

(b) I/^*=(I|-|I)^*

(d) L^*=J]>**

(e) J cyi & = JJ [*A/+ <Vc7, V/>] ax dy

7.6 Applications of Green's Theorem

Several of the exercises at the end of the previous section have indicated

the uses of Green's theorem. The rest of this chapter is devoted to the

application of this theorem to some of the topics we have been developing.

We shall leave aside until the next section its more profound uses in the study

of complex differentiable functions.
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The Shape of the Domain

The most immediate implication of Green's theorem is the suggestion of

the relationship of the shape of a domain to the question of the exactness of

closed forms. If every closed curve in the domain D is the boundary of a

subdomain in D, then every closed form is exact. For, suppose co is a closed

form. By Theorem 7.4 (i), to show that eo is exact, we need only verify that

its integral over any closed curve is zero. If Y is such a curve, then by

hypothesis it is the boundary of the subdomain E. Then, by Green's theorem

\eo=\deo = 0

JT JE

since deo = 0.

We can say that a domain D
"

has no holes
"

if every closed curve in D

is the boundary of a subdomain of D. This is intuitively clear : we can draw

a loop around any hole which will bound the hole and this is not a subdomain

in D. The further study and precision of these notions is a rather difficult

branch of mathematics and falls within the domain of topology. It turns

out that there is a precise relation between this vague geometric study and

the question of exactness. The number of "holes" in the domain is the

same as the number of independent closed but nonexact forms. We already

saw that (in Section 7.2) for R2 - {0} and in Problem 15 for R2 - {0, 1}.

That argument easily generalizes to the case of the complement of finitely

many points, pu...,ps. Let 9((z) = arg(z - />,-) Although 9t is not a

well-defined function on R2 - {pu .. .,ps}, d9t is a well-defined form.

Clearly, d0u ..., d9s are independent, so there are at least s independent

closed nonexact forms on R2 = {pu...,ps}. Now, let eo be any closed

form and define

1 r

Ciico) =\ co

2ni Jct

where C; is a small circle centered at pt . Then

1 s

eo' = eo
- 2 ciim) d9t
2n i=i

is exact. This can be proven by verifying condition (i) of Theorem 7.4 by

Green's theorem (see Problem 33). Thus if eo is any closed form it is, but

for an exact form, a linear combination of the dQt .
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Area Computation

Now, as in Examples 27, 28, we can compute areas by boundary integrals :

if D is a regular domain

area ofD = \\dx dy = x dy = y dx = x x dy y dx
JJd ^dD JdD ^ JdD

(7.48)

Example

29. The area of a trapezoid is 1/2(6! + b2)h (see Figure 7.9).

area = x dy = x ciy + x dy
^D 'Li ,t2

Ll:y =

JdD JLi

h

a. + b2 bt

h

(x -b^ x e [a + b2 , frj

L2: y =
- x x e [0, a]

area = x dx + x- dx

Jbl ex + bi-bi Jx a

+ Z>2)2 - Vl ft
=H(:
2|_ a + b2 - *>i 2a

=

2
l> + ft2 + &i - a] =

2
(fti + z)h

(" + bi.h)

(6.,0)

Figure 7.9
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Integration after a Change of Variable

A line integral of a differential form is the same, no matter what coordinates

are used to compute it (recall Proposition 4). Using this knowledge and

the preceding computational techniques we can find a formula for computing
double integrals by a coordinate change.

Suppose that F is a nonsingular differentiable transformation of the domain

D onto the domain E (that is, F maps D one-to-one onto E and dF is every

where nonsingular). Let us write F in terms of coordinates :

u = u(x, y) ,
.

,. _, x = x(u, v) ,
. ._

...,

F : ; -V (x, y) e D F
1

: ) ( (w v) e E (7.49)
v = v(x,y)

"'

y
= y(u,v)

v

If T is a path in D, then F(Y) is a path in E. If co = p dx + q dy is a

differential form defined on D, we may associate it to a form on E: eo = a du

+ )S df , where the cooefficients are given (see (7.24)) by the coordinate

change (x, y) - (, v). Then Jr co = JF(r)d>, since they represent the same

integration relative to two different coordinate sets. Now, if Y bounds a

domain A, F(r) bounds F(A) and if we apply Green's theorem to both sides

we will obtain a relation between the double integrals. However, to apply
Green's theorem we must be sure that both Y and F(T) are oriented as the

boundary of the domains A, F(A), respectively. That is not necessarily
the case.

Example

30. The transformation

v = x

amounts to reflection in the line x = y. If Y is a circle centered on

that line, Y and F(T) are the same curve, but oriented in opposite

directions (see Figure 7.10).

This difficulty may be overcome by restricting attention exclusively to

transformations that preserve the sense of orientation around a curve. This

will be guaranteed if the sense of
"

counterclockwise
"

rotation about cor

responding points is the same. Thus, if we rotate the xy plane about the

point p in the clockwise sense, the induced motion under the transformation

T must also be clockwise. This will be the case if it is so for the linear
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Figure 7.10

approximation dT(p), and that is guaranteed by

Sjx, y)

3(u, v)
(p) = det

{dx
du

(P)

\du

dx

~d~v
(P)

8y< ^

Tviv)

>0 (7.50)

/

These remarks are not completely obvious, but we shall not pause to

verify them. It is intuitively clear that the sense of rotation at a point is the

same for the transformation and its differential. What is not so clear, and

more difficult to obtain is that this local criterion assures that the sense of

orientation of any boundary is the same in the two coordinate systems. All

these geometric considerations can be avoided, by replacing them with

appropriate algebraic considerations. We shall see further illustrations of

the difficulty in a purely geometric, rather than algebraic, approach in the

next chapter.
In any event, if (7.49) defines a change of variables satisfying condition

(7.50), then for any subdomain A of D, dA and 3F_1(A) define the same

orientation on the boundary of co. Thus, if co is any differential form

/- = /J
r)A JdF-i

CO

SF-^A)
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In particular,

dy dyr r r oy oy
area (A) = \ x dy = \ x dy = x du + x

Jd\ JdF'^A) JdF-L(A-) dU dV
dv

= f \JL(x8-l)_(x?lX\dudv
'f-i(A)l5w\ dv) dv\ du) \

= J/r- 1

Six, y)
du dv

F-i(A) d(u,v)

A more important formula is that allowing us to compute double integrals

with respect to the new coordinates (u, v).

Theorem 7.7. Let D be a domain in the plane, and suppose

x = x(u, v)

y
= y(u, v)

is an orientation-preserving change of coordinates (that is, d(x, y)/d(u, v) > 0).

Let E be. the domain in (u, v) variables corresponding to D. Iff is a function

defined on a rectangle containing D, then \Df can be computed in terms of the

(u, v) coordinates:

\ f=[ fixiu, v), y(u, t>))det^4 ("> 0 du dv (7'51)
JD JE 0(U, V)

Proof. Let R = [(a, b), (a, B)] and define

F(x, y) = f fit, y) dt for (x, y) e R
J
a

Thus Fix, y) is a C1 differentiable function on R such that dF/dx =/. Now, by

Green's theorem

f fdxdy= f Fdy
Jd Jsd

We can compute the integral over dD in the (, v) coordinates:

dy dy

lFdy=LFdy=LFidu+F *
dv

dv
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By Green's theorem (in the (u, v) variables), the last integral is

JE [du \ dv) dv \

( fdFdxdy dFdy

JE \_dx du dv dy du

du dv

dy

dv

d2y dFdxdy dFdydy d2y

dudv

~

dx dv du dy dv du dv du

r &ix y)
=

J f(x(u, v), y(u, v)) det-^ du dv

du dv

Thus (7.51) is proven.

Examples

31.

r dr d9 AV A*
r dxdy

_

/ r ar at)
_

r r
,

J^+),3sl(x2 + y2)1/2_ V+,,^1 r Jq[j0
dr = 2n

32.

f exp[-(x2 + y2)]cfxdy= f exp(-r2)r dr d9
JRl JR2

= 2n exp(-r2)r dr
Jo

= 7t[-exp(-r2)]? = 7r

Notice that

a
00 \2 .00 <

e\p(-t2)dt\ =J exp(-t2)dt-J exp(-t2)dt

= exp(-x2)cfx- exp(-y2)<iy = exp[-(x2 + y2)] dx dy
J0 J0 JR2

Thus

-co ._

exp(-t2)dt = yjn
Jo

a computation that would have been impossible without the change

of variable to polar coordinates.
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The Divergence Theorem

The general form of Green's theorem first came up in the study of fluid

flows and the theory of potentials. In this study it arises in the form of the

divergence theorem, which we shall now discuss in two variables.

Let v = (v, w) be a vector field defined in some open set in the plane and

let x = x(x0, 0 be the equations of the associated flow (that flow with velocity
field v). Let D be a domain on which the flow takes place. The fluid which

at time t = 0 occupies D has moved after a time t, to a domain D, given by

Dt= {x:x = x(xo,0 x0eZ>}

The area of Dt is

area (Dt) = f dx dy = f f(*t,y,) dx0 dy0
JDt jd o(x0 , y0)

where we have rewritten the equations of flow as

x = x(x0, 0 = ixixo , y0), ytix0 , J>o))

The rate of change of the area of Dt is

^area(A)=f |[|^4'dt JD dt ld(x0 , y0).
dxQ dy0 (7-52)

Now let us evaluate this at time t = 0. Remembering that x(x0 , 0) = x0 ,

we have

d_
dt

dx, dy, dx, dy, S2x
, m d2y
ix0,yo 0) + .

. (x0 , y0 , 0)
,=o dt dx0 dtdy,_dx0 dy0 8y0 dx0

Now

d2x
_

d (dx\ __

dv d2y
_

dw

dt dx0 dx0 \dt ) 8x0 dt dy0 dy0

Thus the instantaneous rate of change of the area of D (Equation (7.52))
is given by
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The integrand is called the divergence of the flow and is denoted div v. The

divergence theorem says that this integral can be computed by a boundary

integral. To put it physically : the rate of expansion of D is the same as the

rate at which fluid flows into D. We will now try to compute that latter

amount. Let dD have the frame T -> N so that N points into the domain

(see Figure 7.11). The amount of fluid passing into dD through a small

piece of the boundary (of length As) in a time At is

<v, N> As At

The total amount passing through dD is thus well approximated by a Riemann

sum for the integral

(j <v, N>ds]At
Thus the rate at which fluid passes into D can be thought to be given by

f <V,N>d5
JdD

Using the notation of Exercise 29 this is the same as

| <*v, dx} = f wdx + vdy
dD JdD
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By Green's theorem this is the same as (7.53). Thus the divergence theorem

is verified :

f <v, N> ds = f div v (7.54)
JdD Jd

If v is a conservative field it has a potential function / and <v, dx} = df.

Then <*v, dx} = *df and (7.54) becomes

f *df = f d* df = f A/
JdD JD JD

Thus, if/ is the potential function for a conservative and incompressible

(divergence free) flow, /must be a harmonic function. Dirichlet's problem

(to find a harmonic function with given boundary values) may be restated as :

find the conservative incompressible flow with given boundary potential

levels.

The Cauchy Theorem

This last remark leads directly to the study of complex analysis. Suppose

that /is a complex-valued complex differentiable C1 function defined on a

domain in the plane. Then

r
/(z + h) - fjz)

hm
;

= / (z)

exists for all z and (what is the same assertion) the Cauchy-Riemann equations

hold:

dl=-id-l
dx dy

It follows that the form/(z) dz is a closed complex-valued form:

f dz = / dx + if dy

d(f dz) =
'd
cn

df'

d-x(lf)-Ty.
= if

~

fy = 0

Theorem 7.8. (Cauchy's Theorem) // / is a C1 complex differentiable

function defined in the regular domain D, then

\ fdz = 0

JdD
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Proof. By Green's theorem

\ f dz=\ d(f dz) = 0
JdD ^D

EXERCISES

17. Compute the area of these domains:

(a) x* + y4 < a*

(b) x2y<l,0<x<a

(c) r < 1 + 2 cos 8 (each section)

(d) r < e", 0 < 8 < 2tt

(e) The domain {u2 + v2 < 1/2}, where

u = x(l + x cos v)

v = y(l + y cos x)

(f ) The domain {0 < h < 1 , 0 < y < 1}, where u

18. Compute div v for these flows:

1 -1

-1
(a) x(x0 ,t)= exp D< Xo

(b) x=x0(l + 0,y = vo(l-/2)

(c) v(x, y) = (x2 -y,y2 -

x)

(d) v(x, y) = (x + y, x
-

v)

PROBLEMS

33. Let D = R2 {pi, ..., p,}, where pi, . .

., ps are s distinct points in the

plane. Show that there is an ^-dimensional space L of closed, but not exact

forms defined on D such that every closed form can be written df+oi, with

coei.

34. Let co be a closed form in R2 {(0, 0)}. Show that if co is exact in

some annulus {a < \z\ <b), then it is exact.

35. Let / be a complex-valued differentiable function defined in the

domain E. Show that /is complex analytic if and only ifUdf dz = 0 for all

subdomains D of E. (Hint: d(fdz)=0 is the same as the Cauchy-

Riemann equations.)

7.7 The Cauchy Integral Formula

In Chapter 5 we introduced the power series development of functions in

order to effectively compute solutions to certain differential equations.
Those functions which admit an expansion into a power series are called

analytic. We saw that this is the most computable class of functions. We
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saw that such functions are differentiable in the complex sense, and that the

differential equations can be interpreted in the sense of complex variables.

In Chapter 6 we found that if a function is the sum of a convergent power
series in the closed unit disk, it can be computed by means of an integral
around the circle :

if

/(0 = InCfor|CI<l
ii
= 0

then

2* f(J*\J

2jt Jn e

fwde
2n J0 e' - C

for | C| < 1 . The integral may be rewritten as a line integral :

m
'

J M*
zm J\z\ = i z 4

The Cauchy integral formula is a great generalization of this. It weakens

the hypothesis to that of complex differentiability and strengthens the con

clusion by replacing the unit circle by the boundary of any regular domain.

Theorem 7.9. (Cauchy Integral Formula) Suppose that f is a C1 complex-
valued complex differentiable function defined in a neighborhood of the regular
domain D. Then, for e D,

/(C) = -Lj 1^1 (7.55)
27tl JdD z L,

Proof. Let A = {z: \z l\<n~1}. If n is large enough, A is contained in

D (see Figure 7.12) and f(z)(z )_1 is a complex differentiable in D A . This is

because the product of complex differentiable functions is complex differentiable.

Thus f(z)(z )-1 dz is closed, so that

r f(z) dz

Jd(D-&) Z L,

Thus

r f(z)dz r f(z)dz ,
r2" f(UWe")

_,
. .f2" ^ , . M

T= F
= / -Tli n1ewd8 = i\ /({ + n^e'^dd

J id z-t, JeAn zC Jo n V J0
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Figure 7.12

But as n -* co, /( + n le") -?/() uniformly on the circle, just because / is con

tinuous at . Since n is arbitrary (but large),

r f(z)dz r2" c2n

J-^j- = lim i /( + -V) /0 = i /() dd = 2mf(Q
JdD Z C, Jo ^0

and thus (7.55) is proven.

The Cauchy integral formula implies that complex differentiable functions

are extremely well behaved; after all a function certainly must be quite

special for it to be completely and explicitly determined within a domain by
its boundary values. Here are a few corollaries of Theorem 7.9 which

demonstrate this.

For simplicity of notation we shall write fe A(D) to mean that / is a C1

complex differentiable function on a regular domain D.

Proposition 5. (The Maximum Principle) Let / be in A(D). The maxi

mum off on D is attained on dD.

Proof. Since D is compact, the maximum of /is attained at some point e D.

If there is no point on dD at which /attains its maximum, then not only is $ dD,
but

1/(01 >max{|/(z)|:*e 82)}
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We shall show that this assumption leads to a contradiction. Define

/(*)
Qiz)-

7(0

Then geb.(D) also, #(0 = 1 and |lc7lU<l. Then gn 0 uniformly on dD as

n -> oo . Thus

g"(z) dz

z-i
*0

as - co. But, by the Cauchy integral formula, that integral is 2-irig"(Q = 2m'

which does not tend to zero.

Proposition 6. Suppose f , f are all in A(D) and lim/ = / uniformly on

dD. Then lim/ = f uniformly in D.

Proof. By assumption, ||/ /||8D->0 as -><x>. But since ffeA(D), by

the maximum principle,

ll/n /I'd= II/, AI'sd so |'/ /|'d->0 as -> co also

Proposition 7. (Liouville's Theorem) /// is bounded and complex differen
tiable on the entire plane, f is constant.

Proof. Let Mbe an upper bound for \f(z)\. Let 0, 0 be any two points on the

plane.

1/(0) -/(0) I -f277/ J I-

<;

<-

277/ J
|Z|=R

2rr

MR

1 1

z-Oj
/(z) <fe

/-'(xl=
c/z

(*-.)0 -0)

d8

<-

2

M

'2^

Jl ^'-l (to" - CMRe" - 0)

z r2~

r^-^LJo \e" r.iR-1\\e"-r.2R-'\

As /?->- oo, the integrand converges to 1. Thus the entire expression on the right

becomes arbitrarily small as i?-oo. On the other hand, the left-hand side is

independent of R, hence must be zero. Thus, /(0) =/(0) for any 0.0-
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The most important property of complex differentiable functions is that

they are analytic, that is, they can be expressed as the sum of a convergent

power series about any point. The following theorem brings together all

the notions of analyticity and summarizes the basic properties of analytic
functions.

Theorem 7.10. Letfbe a C1 complex-valuedfunction defined in a neighbor
hood of the regular domain D. The following assertions are equivalent :

(i) For any e D, and R such that the disk A(, R) is contained in D, f
is the sum in A(, R) ofa convergentpower series:

/(z) = f an(z - )" (7.56)
71
= 0

(ii) / is complex differentiable.

(iii) f satisfies the Cauchy-Riemann equations:

8-l=-i8-l
dx dy

(iv) fdz is closed.

(v) for any e D,

2ni JdD z

In case f has these properties the coefficients an of (7.56) are given by

/<">() 1 r f(z) dz

a"==2^Li^irT (7-57)

Proof. The implications (i)=;(ii), (ii)=>(iii) were observed in Chapter 5,

(iii) => (iv) in the preceding section and (iv) => (v) is the Cauchy integral formula

(Theorem 7.10). That leaves only the implication (v) => (i) and the first part of the

theorem will be proven. Suppose then, that (v) holds, and A(, R) <= D. We have

to show that / can be expanded in a power series centered at . By hypothesis,

min{|z
-

| : z e dD} ^ R. Thus for w e A(, R),
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for all z e dD. Thus

1 1 1 / w-A-1 (w-ty

M-^1Mz-w 2_ _/>_) z-i\ z-i) t-o(z-)+1

uniformly for z 6 dD. We can thus substitute this sum for the term (z-w)-1 in

the Cauchy integral:

/(W) "
fcrfL T^w~

=

2^L /(Z) .? (T=1P
*Z

=l[^l(z-^rT-0
Thus /is represented by a power series whose coefficients are given by the integrals
in (7.57). That the coefficients also are given by the successive derivatives as in

(7.57) was already observed as part of Taylor's formula. Thus, the theorem is

completely proven.

Examples

33. If / is analytic in the disk A(, R), then the power series re

presenting / near actually converges to / in the entire disk A(, R).
For, by Theorem 7.10, /is, in this whole disk, the sum of a power

series centered at , but such a power series is uniquely determined by

/, so must be the given one. In particular, if/is analytic in the entire

plane it can be expanded in a power series converging everywhere.

34. Suppose that /is analytic near . Then

fi*)-fiO
(7.58)

is also analytic near . For, we can easily factor the Taylor expansion
of f(z) - /(). If f(z) = ,- 0 an(z -

)", then

fiz) -fit) = t alz - )" = (z - ) g an+1(z
-

)"
71=1 71 = 0

so (7.58) is given by "=0 an+iiz 0"- In particular, z-1 sin z is

analytic on the whole plane, and has the Taylor expansion

z-1sinz = f (-1)"-^-
1 = 0 \Z )'
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35. f
J|z| = l

tan z dz tan z

-5
= 27H = 2ni

z
= 0

36- f -#T=f
J|z-(1 = 1 Z + 1 -'|z-i|=l

rfz 1
= 2ni = 7t

i| = i(z + 0(z- 0 2i

37. f - -dz = 27ii(sinz)(''-1)|I=o
J\z\ = 2 z

' 0 n odd

(-1)"/227TJ

I in -1)1
n even

r e" (ez)(n_1)
38. f- dz = 2niy

J iz -iz - )" (n-1)!

2niel-

:=;

=

(n-l)!

r2*
39- J. i-

d0

2c7 cos 0 + a

Ia|<l

This integral can be computed by means of Cauchy's theorem by

interpreting it as an integral over the unit circle. Since

cos 9 =
ew + e~w

-H-D
dz = ieie d9 = iz d9

on the unit circle, we may rewrite the integral as

Jl*| = i\ \ 2 / ] xz iJ|z| = iz-

1 / dz
~

~ia J|z| = i z2 - (a + (l/a))z + 1

dz

az2 a + a2z

ia Ji2i = i (z a

dz

M = i(z-a)(z-a )
(7.59)

Since |a| < 1, the function (z a x) Ms analytic on the unit disk

and the integral (7.59) can be computed by the Cauchy integral
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formula

JUI = i

dz

iz-a-^iz-a)
= 2ni -

a a

Thus

27t d9

J0 I -2a cos 9 + a2

Theory ofResidues

-In I 1 \
_

2tt

a \a a-1/ I a2

There are many definite integrals which may be computed in similar

fashion. The integral formulas of complex analysis provide a powerful

technique for computing such definite integrals called the residue calculus.

We shall give a brief introduction to these methods. First, a few more

illustrations

40.
r2" n C /z + z~1\bdz

cos6 9 d9=
J0 J|*l = i\ 2 J iz

1 r (z2 + l)6 ,
n

r, , ,N,

2!Jiz| = i z' 6!2d'1*1 =

TT 5 3 1

2s 6 4 2

41.
+ COS2 0 J|2|

4 c z dz

r2* d9
_

r |\ /+_L^\
Jo l+cos20~J|2| = i [

+

\ 2 /

lJ|z| = l

tfz

iz

z4 + 6z2 + 1
(7.60)

We are now not in a very good position, for we cannot recognize the

integrand as a Cauchy integrand. To do so we should be able to write it in

the form f(z)iz )"" for some function / analytic on the unit disk, and

in the disk. But it is not of that form. The integrand is

(z2 + 3 + 2^2)(z2 + 3 - 2^2)

z2+(3 + 2^2) z + (-3 + 2V2)1/2 z-(-3+2x/2)1
/2
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which has the form f(z)(z - a)~1(z - /J)-1 for two points a, /? in the disk.

However, we can still compute this integral by returning to the proof of

Cauchy's integral formula. If Al5 A2 are two small disks centered at a, /?,

respectively, then f(z)(z - a)'1 (z /?)_1 is analytic in A (Ax u A2), so

by Cauchy's theorem

f(z)dz
= 0

JarA-fA,. u a2)] (z
- a)(z ~ P)

Thus, the integral (7.60) is the same as

r z dz

JsAi(z2 + 3 + 2^2)(z-P)(z-a)

z dz
+ I.5A2(z2 + 3 + 2N/2)(z-a)(z-(5)

(7.61)

Now these integrands are of the form f(z)(z )_1 with / analytic on the

disk and in the disk, and can be evaluated by Cauchy's integral. (7.61) is

thus

2ni +
P

.(a2 + 3 + 27'2)(a - p) (P2 + 3 + 2^2)(P - a)J

Since a = -(-3 + 2^2 )1/2, /? =(-3 + 2^2 )1/2, we obtain the result

Jo 1 +

d9

cos 9 i

4
,- 2ni

L-3 +2^/2 + 3 + 2^2.

a-/?

a-jS
= nJ2

The above idea of suitably generalizing the integral formula so as to

accommodate a larger class of integrals is called the residue theorem. We

shall now prove it in general.

Definition 10. Suppose that /is analytic in a neighborhood of the point ,

except perhaps at . We say that / has an isolated singularity at . The

residue of such a function /at is defined to be

Res(/,) = lim-i,f f(z)dz
-.0 zm j|2-(| = e
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Of course, we do not a priori know that this limit exists, and therefore that

the residue is well defined. However, there is no problem: for any e and e',

we have

f /(z) dz = f f(z) dz
J\*-a=e J|z-CI=*'

by Cauchy's theorem, since /is analytic in the (regular) domain bounded by
these two circles. Thus the limit certainly exists since it is independent of e.

Now the residue theorem says that the boundary integral of a function analytic
but for isolated singularities is given by its residues ; which we may calculate

by the integral formula, or other available local means.

Theorem 7.11. (Residue Theorem) Suppose that f is analytic on the regular
domain D but for isolated singularities at 1; . . .

, in D. Then

f f(z)dz = 2ni Res(/,;) (7.62)
JdD ,= 1

Proof. Let At, . . .

, A be disjoint disks centered at 0, . . .
, , respectively. Then

since /is analytic in D u;=1 D, , by Cauchy's theorem

f f(z)dz= J f f(z)dz
JdD i = 1 Je&,

But the sum is just (7.62) by the definition of residue.

Examples

42.

C" cos2 9

J-Bl +sin2(
-dO---L

i(z + (l/z))2

l-i(z-(l/z))2

dz

iz

-L
- 1 z4 + 2z2 + 1

iz z4 - 2z2 - 3
dz

Now the roots of the denominator are
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and the integrand can be rewritten as

1 z4 + 2z2 + l

/CO =
-

iz (z2-3/2)(z + i/V2)(z-(i/N/2))

The residues to be computed are those at 0, i/sJ2. The integral
around each singularity is a Cauchy integral, so we need only evaluate

the relevant function at the point in question.

ReS * =
Ti

p
, 1/4 + 2(- 1/2) + 1 1

Resi/V2 J = = 1=
=

TT

i(7>/2)(-(l/2)-(3/2)X2i/>/2) 8,

-1 1/4 1

ReS-i/'/l/ =
l/N/2(-2)(-2i/V2)~8I-

Thus, our integral is

2-ZRes/=2,i(i-i + i)=f
It is clear that any integral of the form

f R(cos 9, sin 9) d9
J
-n

where R is a quotient of polynomials, can be handled in this way by the

substitutions

cos0 = i(z + i) sin0 = i(z-i) d9 =
eh

iz

The integrand then becomes a quotient of polynomials is z, and we need

only compute the residues at the roots of the denominator which lie inside

the unit circle. At such a root r, the integrand takes the form

fiz)

g(z)(z
- rf



7.7 The Cauchy Integral Formula 595

where fg is analytic near r. Thus the residue is, by Cauchy's formula

1
f f(z)dz i //coy*-1'_t_
r f(z)dz

_

1 //(Z)\(

271/ J c7(z)(z - r)fc (fc-l)!\c7(z)j

The cases we have considered so far are those where k = 1. Here is an

illustration of the more general case.

43.

dO r I dzr" ao r

J-It(2 + cos0)2
=

J|2, = 1(2 + cos 9)2 JM = 1 [2 + i(z + (I/O)]2 <z

4 r z dz

i 'm = ii|2| = !(z2+4z + l)2

The roots of the denominator of the integrand are

-2 + 73 -2-y/l

These are both double roots. We need not be concerned with the

root 2 ^/3, since it is outside the unit disk. The integral is

conveniently rewritten as

JUI = i

z dz

l = i(z + 2 + N/3)2(z + 2-V3)2

By Cauchy's formula the integral is evaluating the derivative of

/(z)= z(z + 2 + N/3)-2 at -2 + ^3. Now

_

-2 + 73-2-^3 1

f'(-2 + ^3) -
-

(_2 + y-3 + 2 + ^3
~

2v/27

Therefore, our integral is

4 1 4
- 2/71
i 2(27)1/2 (27)1/2

44. Occasionally, the integrand does not obligingly form itself into

a Cauchy integral, and we must play around a little more

\\2d9=\ exP(z + i^=f ^ dz

J-K J\z\ = l \ Z] Z J|Z| = 1 Z
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The only singularity is at 0, but we cannot rearrange this in the form

/(z) z" 1. Thus we must compute the integral directly by some other

means. Since

ez=L^ ellz=2Z-T
= o n ! = 0 n !

and

e'-e^= til i^z-
n= oo i-j

=
n ''J- I

\ J>0 /

Thus

f e2d9= t }Z -i-f z-^z
J-lt 11= -CO i-j=77 I'-;! J\l\ = l

i20

J>0

But that last integral is zero unless n = 0, in which case it is 2?r. We

conclude that

f e2d9 = 2n2Z^- = 2n>Z ,-UJ-* frj'!;! n=0(n!)2
i^O

Integrals from oo to + oo

The techniques of residue calculus also apply to suitable integrals of the
form

Hx) dx (7.63)
'-no

If, say, F(z) is analytic but for isolated singularities at z1; ..., zt in the

upper half plane, then

f F(z)dz = 2ni\\ Res2i(F)
JdD ;=i
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whenever D is a domain containing zu...,zk. Choosing D=DR =

{z: \z\ < R, Im z> 0}, the integral is

f F(x) dx + f F(z) dz
J-R JHR

where HR is the boundary in the upper half plane of the disk of radius R.

Now if F(z) -> 0 as | z\ - oo fast enough, the integral over HR will tend to zero

and the integral from -R to R will tend to (7.63). We shall say that F is

dissipative in the upper half plane in this case. Thus we conclude that when

F is dissipative in the half plane II,

f F(x)dx = 2niYj Res,(/)
'-oo zeII

45.

00 x2 dx
,.

r

V* 4. 1

= llm J
-oo X +1 K-.OD J^D

z2 dz

Rz4 + 1

For

f
zdz

- c
R2e2i" ' Rei6i dd

JRz4+l
~

J0 R4eRie+l

2nR3

R*- 1
as R-*- oo

Now the roots of z4 + 1 are (+ 1 + i)/y/2. Those in the upper half

plane are a = (1 + i)/y/l, b = (1 - 0A/2- Thus

Res,

i + ii ri + nn

/ z

\_ LV2JLV2J
'\z4 + i/ ri + i -l-nri + i -i + nri + i 1

[ i] [1 +
i
_

-1 + i] [1
^2 ^2 J L ^2 ^2 JL^/2 V2

1 + i

81^/2
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Finally,

x2 dx/" x ax

J-x* + l
= 27ri

1+i 1 - i

;= +

.8^/2 81V2J 2^2

A condition on F that guarantees that it is dissipative is that F is the

quotient of two polynomials such that the denominator is of degree
two more than the numerator (see Problem 37).

46. Compute

/<*> e~iaxdx

J-00 1 +x2
(7.64)

Now, we would hope to apply the residue theorem to e ,z(l + z2) l.

For z = x + iy, this becomes

e> e

1 + (x + iy)2

which is hardly dissipative for y > 0. But it is dissipative in the lower

half plane :

f ~

J\z\=R 1

e-'"dz

z\=R 1 + Z*

)><0

I.
0
exp[- ia(R cos 9 + i sin 0)]2?ie''fl d0

1 + KV
2.i29

<
j exp(-aR sin 0) dQ <

R \ J- R2-l

as R -* 00. Thus we compute (7.64) by residues over the lower

half plane :

5-= -2jtiRes_, j \=2m = -

J-00 1 +x2 '\1 + z2/ -2i e"

(The sign changes since the x axis is oriented opposite to the orienta

tion it obtains as boundary of the lower half plane.) Notice, by the

way, that

r00 cos ax dx e-,axdx r00 eiax dx nr cos ax ax c e ax r e ax n

=- = Re 5-
= Re = =

-

J-00 1+x2 J-ool+x2 J-ool+x2 e"
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Since

r00 sin ax dxr~ sin

J-ooT+ x2
= 0

(the integrand is an odd function), we obtain

r< eiax dx / e~iax n

J-o0ir^
=

J-o0rT^dx=? a>0

EXERCISES

19. Perform the indicated integrations by residues:

(a) f
dd

J-cos20 + 2sin20

(h) r
de

V ;

J_(cos20 + 2sin20)2

(c) \ T nJ|,|=2 z(z-l)4

e"

dz

ezzdz

(d) J|2i = i(4z2 + 1)

r2' <#
(e) J r= 4 cos 0

2* <#r
"

a

(f) I nr-Jo 1 + a^o i + a sin
j, a<l

r cosxrfx

(g) J-M(x2 + a2)(x2 + Z>2)

x2 dx

x6 + l

f
*

J-GO (X

sin x

dx

D
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rM dx

(k) J_x2 + 3x + 2

t" dx

(1) Li+*s

20. Suppose that /is analytic in a neighborhood of , and

f"\l) = 0 0<j<k

Show that

/(*)-/()
<?(z) =

:

(z-)k

is an analytic function.

21. Suppose that /is analytic in a disk centered at , and all derivatives

of /vanish at . Then /is identically zero.

22. Suppose that /is analytic in the punctured disk 0 < \z
- | < R and

bounded. Then, defining /at $ by

/() = lim/(z)

the extended function is analytic.

PROBLEMS

36. If {/} is a convergent sequence of analytic functions in the domain D,

then the limit function is also analytic.

37. If

P(z)

where P, Q are polynomials, then F is dissipative if the degree of Q is 2

more than that of P.

38. Suppose that /is analytic in the punctured disk 0 < \z 0| <R-

(a) Show that

f -

J[z\=r (
rfz 0 < r < A

W"

is independent of r.
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(b) Fix some r0 < R. Show that if r0 < | - Co I < R,

l Jic-c0i=ji z L, 2m J|{-{oi=r0 z 4

(c) Expand /in a series of the form

/()= I fttf-W (7.65)
n= oo

called the Laurent expansion of/, by noticing that

i_i
r /g-goVT |- (->)"

z
-

z
- o L \z- o/J .tb (z - 0)"+l

for |C-0|=JI, |z-0|<*, and

1

|
(z-W

z-g .^-W+1

for |z 0| =/-, and | 0| >r.

(d) Show that Res{ /= a_i.

39. Equation (7.65) can be verified in another way. Expand / in a

Fourier series around each circle \z go I = r:

/(*)= 2 aJrW z = re' (7.66)

(a) The Cauchy-Riemann equations imply that

df 8f

(b) Differentiating (7.66), we obtain

0= f (ran-nan)e'">
n= oo

Conclude that a(r) = An r". Thus (7.66) becomes

/(z) = | A rV"* = A, + | C4 -. '- + A, z")
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40. Suppose that /is one-to-one in the domain D. Then by the residue

theorem

J-f
2m JBt

z dz
0

2m hD wf(z)

if w is not a value of /in D. Suppose /(o) = w. Then

z dz

a='-=hLhDV/f{z)

Conclude that the inverse of a one-to-one analytic function is again analytic.

7.8 Summary

Let p e R" and suppose f is an Revalued function defined in a neighbor

hood of p. / is differentiable at p if there is a linear transformation

T: R" -+ Rm such that

l|f(p + v)-f(p)-r(v)iLoas^0
IMI

Tis called the differential off at p and is denoted df(p).

The differential is linear in the function f and also satisfies

/<f,g> = <tf,g> + <*,<*>

Let U be a domain in R". A system of coordinates on U is an w-tuple of

C1 functions y such that

(i) ifp#q, y(p)#y(q)

(ii) dy(p) is nonsingular at all p e U

The matrix

8(y\ ...,/) fly'

5(x1,...,x") 5xJ'

is called the Jacobian of the coordinate change.
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the chain rule. The differentials of composed mappings compose as

linear transformations :

d(s f)(p) = 45(f(p)) df(p)

inverse mapping theorem. Suppose F is a C1 K"-valued function defined

in a neighborhood of p0 such that rfF(p0) is nonsingular. Then there are

neighborhoods N of p0 and U of F(p0) and a C1 mapping G: U-* N such that

G = F-1.

Let D be a domain in R". A differential form on D is a function which

associates to each point p in D a linear function co(p) on R". A differential

form has the form

n

co(v) = X a;(p) dx'(p)
i=l

a> is said to be Ck on D if all the functions au ...,an are C*. If co is the

differential of a function we must have

pj =^ l<UJ<n (7.67)
ox' ox

A differential form is exact if it is the differential of a function, and closed

if (7.67) holds.

Suppose that F is a force field defined in a domain Z) in R", and T is an

oriented path defined in D. The work required to move a unit mass along T is

W{T, F) =
- J*<F((), g'(0> dt

where g furnishes a parametrization of T.

A field is conservative if W(r, F) = 0 over all closed paths T. A potential

function for a field F is a real-valued function II such that

w(r, F) + n(p')
- n(p)

is the same for every oriented path T from p to p'.

Suppose D is a domain such that any two points can be joined by a path

in D. Then

(i) every field, conservative in D, has a potential function

(ii) two potentials of a given field differ by a constant

(iii) If F = (Ji, . . . ,/) has the potential IT, dU = /; </x'
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line integral of a differential form. Let r be an oriented path in a

domain on which the form co is defined. If T = Yj=i T{ ,
define

"'r i=l Jat

If T is the tangent to T,

\ co = co(T) ds

Let co = Yj ai dx' be a C1 differential form defined on D. co = <// for

some function /

(i) if and only if the field (au ..., a) is conservative

(ii) if and only ifr co = 0 for all closed curves

(iii) only if

dat daj
c7x1

=

~dxi

throughout D.

for all i, j

poincare's lemma. Suppose that D is a domain such that for some fixed

point p0 in D and every p e D, the line segment joining p0 to p is contained

in D. Then every closed form is exact in D.

In two dimensions a differential form has the form co = p dx + q dy.
If co is C1 we shall denote the function

dq dp

dx dy

by dco. A regular domain in R2 is bounded by a piecewise C1 curve. We

orient this curve so that its principal normal points into D (it winds counter

clockwise around D). When so oriented we shall denote the bounding

path by dD.

green's theorem. If co is a C1 differential form defined on the regular
domain D,

Ud to = \Ddco
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Integration under a coordinate change. Suppose

x = x(u, v)

y
= y(u, v)

is a coordinate change on the domain D in R2. Let E be the domain in the

uv plane corresponding to D. If F is continuous on D, then

\ f =\ /(*("> u)> .K", v))
JD JE

Let v = (v, w) be a C1 vector field. The divergence of v is

div v = +
dx dy

divergence theorem. If v is a C1 vector field defined on the regular
domain D,

\ao <v, N> ds = \D div v

A C2 function / is the potential of a conservative divergence-free flow if

and only if it is harmonic.

cauchy's theorem. If / is a C1 complex differentiable function defined

on the regular domain D, then

\Dfdz = 0

cauchy integral formula. Under the same hypotheses on /, if e D,

2ni Jd z 4

maximum principle. If/is analytic on D, it attains its maximum on dD.

Theorem. Let /be a C1 complex-valued function defined on the regular

domain D. The following assertions are equivalent

(i) for any e D, and some R such that A(, R) <= Df is the sum in A(, R)

det
ojx, y)

d(u, v)
du dv
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of a convergent power series

/(z) = an{z
- )" (7.68)

n = 0

(ii) replace the word some in (i) by any

(iii) /is complex differentiable

(iv) / satisfies the Cauchy-Riemann equations

8l=-idl
dx dy

(v) fdz is closed

(vi) for any e D

27t( Jao z -

In case / has these properties (/ is analytic), the coefficients an of (7.68) are

given by

/<"({) 1 f /(z)dzJV1U i f

n! 2ni-'afl(z-)"+1

If/is analytic in {0 < | z z0 1 < R}, we say that /has an isolated singularity
at z0 . In this case the integrals

^~.\ f(z)dz
'\z-z0\=r

are all the same for 0 < r < R. Their common value is the residue of / at

z0 ,
denoted Res (/, z0).

residue theorem. If /is an analytic function on the regular domain D,

except for isolated singularities at zlt . . .
, z in D, then

f f(z)dz = 2ni Res(/,z()
JdD i=l
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FURTHER READING

The general theorems on differentiation in R" are fully discussed in:

H. K. Nickerson, N. Steenrod, D. C. Spencer, Advanced Calculus, D. Van

Nostrand Company, Inc., Princeton, N. J., 1957.

M. E. Munroe, Modern Multidimensional Calculus, Addison-Wesley,

Reading, Mass., 1963.

L. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley, Reading,
Mass., 1968.

For further information on complex analytic functions see

Z. Nehari, Introduction to Complex Analysis, Allyn and Bacon, Inc., Boston,
1961.

H. Cartan, Elementary Theory of Analytic Functions of One or Several

Complex Variables, Addison-Wesley, Reading, Mass., 1963.

E. Hille, Analytic Function Theory, Ginn and Company, Boston, 1959.

L. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1953.

MISCELLANEOUS PROBLEMS

41 . Prove the assertion concerning integration under a coordinate change

as given in the summary (where no reference to the orientation is made).

42. Show that if u> is a differential form of compact support in R2, that

f dw=0

43. Recall the definition of connectedness given in Problem 78 of

Chapter 2. Show that a domain in R2 is connected if and only if it is path-

wise connected.

44. If co =p dx + q dy is a C1 form, define

*tu = qdx+pdy

(a) Show that for any regular domain D,

f o(N) ds = f d
JdD J D

*,

D

where N is the interior normal to D.

(b) Show that the function u is harmonic if and only if d*du = 0.

(c) co is (locally) the differential of a harmonic function if and only

if d<a = 0, d*w = 0.

45. If is a harmonic function in the domain D and if *du is exact in D,

then u is the real part of an analytic function in D.
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46. If u is harmonic in D, and T is a closed path in D, the integral

hS;du

is called the period of u about T. Show that u has zero periods about all

paths if and only if u is the real part of an analytic function. Show that

exp(K) is the modulus of an analytic function if and only if has integer

periods.
47. Let D = R2 {plt ..., ps), where pi, . . .

, ps are j distinct points in

the plane. Show that there is an ^-dimensional space L of harmonic func

tions which are not the real part of an analytic function in D such that every

harmonic function has the form = Hi + Re/ UieZ,, /analytic in D.

(Recall Problem 33.)

48. The Gamma function. Define

r(z)= exp[(z-l) In t-t]dt=\ t'-'e- dt
Ja Jo

(a) Show that T{n) = n\

(b) Show by integration by parts that

r(z+l)=zl\z)

(c) Show that Y is an analytic function in the half plane {Re z > 1}

(differentiate under the integral sign).
49. (a) Show that for any a > 0 the function

r.(z)= t'-'e-'dt

is analytic on the entire plane.

(b) Substitute

e-'=Z(-v"-,
n\

into the integral

\ t'-'e-dt
Jo
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to obtain the formula

n = 0 !(Z+fl)

Justify that substitution.

(c) If Re z > 1
, does lim r(z) = T{z) as a -> 0 ?

(d) Use the result of part (b) to extend T to a function analytic on

the entire plane, but for isolated singularities at 0, 1, 2

(e) Calculate the residue of T at those points.
50. Find the residue at the origin of

expR
51. Compute the Fourier transform of (1 + x2)"1: find

1 r" e~"

(use Example 46).

52. Compute the Fourier transforms of these functions :

(a) (1+x4)"1.

(b) (l+x2)-'(a2 + x2)-1.
x2

(c)

(d)

(1 + x2)2

cosx

(1+x2)'
53. Suppose {/,} is a sequence of analytic functions in D, and lim/, =/

uniformly in D. Show that /is analytic.

54. Prove: If/is C1 in D and fdz = 0 for all disks A contained in D,

then /is analytic.

55. Morera's theorem. Suppose / is a continuous complex-valued

function denned in D such that

j fdz=0

over every closed path T in D. Then / is analytic. {Hint: Let F be a

potential function for fdz and show that Fis complex differentiable.)

56. If /= u + iv is an analytic function in the domain D, then u is the

potential of a divergence-free velocity field. Show that the curves {v =

constant} are the path lines of the associated flow.
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57. Let / be analytic in the domain {0 < \z z0 1 < R} f is said to be

meromorphic at z0 if there is a function g analytic in a neighborhood of z0

such that/- g extends analytically across z0 . Verify that these are equiva
lent conditions for meromorphicity.

(a) the Laurent expansion (7.65) of / about z0 has only finitely
many negative terms.

(b) there is an n such that (z z0)"/ extends analytically across z0 .

58. Show that if /is analytic in the domain D except for isolated singu
larities atpi,...,p,, where it is meromorphic, then there is a polynomial
P such that/ P extends analytically to all of D.

59. If /is meromorphic at z0, is exp(/) also meromorphic there?

60. Schwarz's lemma. Suppose that / is analytic on the disk {z e C:

\z\ < 1}, and

(i) max{|/(z)|:|z|=l} =M

(ii)/(0)=0
Show that for any z in that disk

l/(z)|<M|z|

{Hint: Apply the maximum principle to z"1/.)
61. Under the same hypotheses as above show that

i/'(o)i<n

and if |/'(0)| = 1, then/(z) = cz for some constant c of modulus 1.

62. Let / be in S{R), and suppose that /(/) = 0 for negative t. Show

that

/(z) = -r= f f{t)e'"dt

is an analytic function for z in the upper half plane. Notice that /(; =

(277)1'2L(/).
63. Suppose that /is analytic and dissipative in the upper half plane and

f is in S{R) on the real axis. Show that there is a function g e S{R) with

g{t) = 0 for negative t such that /(z) = g{z). {Hint:
Let

Then, by Fourier inversion, g and /are analytic in the upper half plane and
have the same values on the real axis. Verify that #(0=0 for negative /

by Cauchy's theorem.)
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